Small group number 33 of order 64
G is the group 64gp33
The Hall-Senior number of this group is 251.
G has 2 minimal generators, rank 3 and exponent 8.
The centre has rank 1.
The 3 maximal subgroups are:
32gp30, 32gp6, 32gp7.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 19 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1, a nilpotent element
- x1 in degree 2
- x2 in degree 2
- w1 in degree 3
- w2 in degree 3
- w3 in degree 3
- v1 in degree 4
- v2 in degree 4
- u1 in degree 5, a nilpotent element
- u2 in degree 5
- u3 in degree 5
- t1 in degree 6
- t2 in degree 6
- s1 in degree 7
- s2 in degree 7
- r1 in degree 8
- r2 in degree 8, a regular element
- q in degree 9
There are 134 minimal relations:
- y1.y2 =
0
- y12 =
0
- y2.x2 =
0
- y1.x1 =
0
- y23 =
0
- x1.x2 =
0
- y2.w3 =
y2.w1
- y1.w3 =
0
- y1.w2 =
y22.x1
- y1.w1 =
0
- x2.w3 =
0
- x2.w2 =
x2.w1
- x1.w3 =
x1.w1
+ y2.x12
- y2.v2 =
0
- y1.v2 =
0
- y1.v1 =
0
- y22.w2 =
0
- y22.w1 =
0
- w32 =
x13
+ y2.x1.w1
+ y22.v1
- w2.w3 =
w1.w2
+ x2.v1
+ y2.x1.w2
+ y22.v1
- w22 =
x2.v1
+ x1.v1
+ y2.u2
- w1.w3 =
x13
+ y22.v1
- w12 =
x2.v1
+ x13
+ y2.x1.w1
+ y22.v1
- x1.v2 =
0
- y2.u3 =
y22.v1
- y1.u3 =
0
- y1.u2 =
0
- y2.u1 =
y22.v1
- y1.u1 =
0
- w3.v2 =
0
- w3.v1 =
x1.u2
+ y2.t1
+ y2.w1.w2
+ y2.x1.v1
- w2.v2 =
x2.u3
+ y1.t2
- w1.v2 =
x2.u3
+ y1.t2
- x2.u2 =
0
- x1.u3 =
y2.x1.v1
+ y2.x13
- x2.u1 =
y1.t2
- x1.u1 =
y2.w1.w2
+ y2.x1.v1
- y2.t2 =
y2.w1.w2
+ y2.x13
- y1.t1 =
0
- y22.u2 =
0
- v22 =
x22.v1
- v1.v2 =
x2.t1
+ x22.v2
- w3.u3 =
y2.x1.u2
+ y2.x12.w1
+ y22.t1
- w3.u2 =
x12.v1
+ y2.s1
+ y2.w2.v1
+ y2.x12.w1
- w2.u3 =
x2.t1
+ x22.v2
+ y2.w2.v1
+ y2.x12.w2
+ y22.t1
- w1.u3 =
x2.t1
+ x22.v2
+ y2.x1.u2
+ y2.x12.w1
+ y22.t1
- w1.u2 =
x12.v1
+ y2.s1
+ y2.w2.v1
+ y2.x1.u2
+ y2.x12.w1
+ y22.t1
- x1.t2 =
x1.w1.w2
+ x14
+ y2.x1.u2
+ y2.x12.w2
- w3.u1 =
y2.x1.u2
+ y2.x12.w2
+ y22.t1
- w2.u1 =
y2.w2.v1
+ y2.x1.u2
- w1.u1 =
y2.x1.u2
+ y2.x12.w2
+ y22.t1
- y2.s2 =
y2.s1
+ y2.w2.v1
+ y2.x12.w2
+ y2.x12.w1
- y1.s2 =
0
- y1.s1 =
0
- v2.u3 =
x2.w1.v1
- v2.u2 =
0
- v1.u3 =
w1.t1
+ x22.u3
+ x1.s1
+ x1.w2.v1
+ x13.w2
+ x13.w1
+ y2.w2.u2
+ y2.x1.w1.w2
+ y1.x2.t2
- w3.t2 =
x13.w2
+ x13.w1
+ y2.x1.w1.w2
+ y2.x12.v1
+ y2.x14
- w3.t1 =
x1.s1
+ x1.w2.v1
+ x13.w2
+ x13.w1
+ y2.v12
+ y2.w2.u2
+ y2.x1.t1
+ y2.x1.w1.w2
+ y2.x12.v1
- w2.t2 =
x2.s1
+ x23.w1
+ x12.u2
+ x13.w2
+ y2.w2.u2
+ y2.x1.t1
+ y2.x1.w1.w2
- w1.t2 =
x2.s1
+ x23.w1
+ x13.w2
+ x13.w1
+ y2.x12.v1
- x2.s2 =
x2.w1.v1
+ x22.u3
- x1.s2 =
x1.s1
+ x1.w2.v1
+ x13.w2
+ x13.w1
+ y2.w2.u2
+ y2.x1.t1
+ y2.x12.v1
- v2.u1 =
0
- v1.u1 =
y2.v12
+ y2.w2.u2
- y2.r1 =
y2.v12
+ y2.x14
- y1.r1 =
0
- y22.s1 =
0
- u32 =
x2.v12
+ y22.v12
- u2.u3 =
y2.v1.u2
+ y2.x12.u2
+ y22.v12
- u22 =
x1.v12
+ y2.v1.u2
+ y22.r2
- v2.t2 =
x2.r1
+ x2.v12
+ x23.v2
+ x23.v1
- v2.t1 =
x2.v12
+ x23.v1
- v1.t2 =
w1.s1
+ x23.v1
+ x12.t1
+ x12.w1.w2
+ x13.v1
+ x15
+ y2.x1.s1
+ y2.x1.w2.v1
+ y2.x12.u2
- w3.s2 =
x12.t1
+ y2.v1.u2
+ y2.x1.s1
+ y2.x1.w2.v1
+ y2.x13.w1
- w3.s1 =
x1.w2.u2
+ x12.t1
+ x12.w1.w2
+ x15
+ y2.v1.u2
+ y2.w2.t1
- w2.s2 =
w2.s1
+ w1.s1
+ x2.v12
+ x22.t1
+ x23.v2
+ x1.v12
+ x1.w2.u2
+ x12.t1
+ x13.v1
+ x15
+ y2.v1.u2
+ y2.x1.s1
+ y2.x1.w2.v1
+ y2.x12.u2
- w1.s2 =
x2.v12
+ x22.t1
+ x23.v2
+ x12.t1
+ y2.v1.u2
+ y2.x13.w2
+ y22.v12
- x1.r1 =
x1.v12
+ x15
+ y2.x13.w2
+ y2.x13.w1
- u1.u3 =
y22.v12
- u1.u2 =
y2.v1.u2
+ y2.x1.w2.v1
- y2.q =
y2.w2.t1
+ y2.x12.u2
+ y22.v12
+ y22.r2
- y1.q =
0
- u12 =
y22.v12
- u3.t2 =
x2.q
+ x2.w1.t1
+ x23.u3
+ y2.x1.w2.u2
+ y2.x12.w1.w2
+ y2.x13.v1
+ y2.x15
- u3.t1 =
w1.v12
+ x22.w1.v1
+ x1.v1.u2
+ y2.x1.w2.u2
+ y2.x12.t1
- u2.t2 =
x12.w2.v1
+ x13.u2
+ y2.w2.s1
+ y2.x12.w1.w2
- u2.t1 =
v1.s2
+ w1.v12
+ x2.w1.t1
+ x23.u3
+ x1.v1.u2
+ y2.v1.t1
+ y2.w2.s1
+ y2.x1.w2.u2
+ y2.x12.t1
+ y2.x12.w1.w2
+ y2.x15
+ y1.x22.t2
+ y2.x1.r2
- v2.s2 =
x2.w1.t1
+ x22.w1.v1
+ x23.u3
+ y1.x22.t2
- v2.s1 =
x2.q
+ x2.w1.t1
+ y1.x2.r2
- w3.r1 =
x1.v1.u2
+ x14.w1
+ y2.v1.t1
+ y2.x1.v12
+ y2.x1.w2.u2
+ y2.x12.w1.w2
- w2.r1 =
w2.v12
+ x2.q
+ x2.w1.t1
+ x22.w1.v1
+ x14.w2
+ y2.x12.w1.w2
+ y2.x13.v1
+ y1.x2.r2
- w1.r1 =
w1.v12
+ x2.q
+ x2.w1.t1
+ x22.w1.v1
+ x14.w1
+ y2.x12.w1.w2
+ y2.x15
+ y1.x2.r2
- x1.q =
x1.w2.t1
+ x13.u2
+ y2.w2.s1
+ y2.x1.v12
+ y2.x12.t1
+ y2.x13.v1
+ y2.x15
+ y2.x1.r2
- u1.t2 =
y2.x1.w2.u2
+ y2.x12.w1.w2
+ y1.x22.t2
+ y1.x2.r2
- u1.t1 =
y2.v1.t1
+ y2.w2.s1
+ y2.x1.v12
+ y2.x12.w1.w2
+ y2.x13.v1
- t22 =
x22.r1
+ x22.v12
+ x23.t2
+ x24.v1
+ x14.v1
+ x16
+ x22.r2
- t1.t2 =
w1.q
+ x2.v1.t1
+ x22.r1
+ x22.v12
+ x23.t1
+ x24.v1
+ x13.t1
+ x14.v1
+ y2.v1.s1
+ y2.w2.v12
+ y2.x12.w2.v1
+ y2.x14.w1
+ y2.w1.r2
+ y22.x1.r2
- t12 =
v13
+ x24.v1
+ x1.v1.t1
+ x12.v12
+ x12.w2.u2
+ x13.t1
+ x14.v1
+ x16
+ x12.r2
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s1
+ y2.x12.w2.v1
+ y2.x14.w2
- u3.s2 =
x2.v1.t1
+ x22.v12
+ x23.t1
+ x24.v2
+ y2.v1.s1
+ y2.w2.v12
+ y2.x12.s1
+ y2.x13.u2
+ y2.x14.w2
+ y2.x14.w1
+ y22.v1.t1
- u3.s1 =
w1.q
+ x2.v1.t1
+ x1.w2.s1
+ x12.v12
+ x13.w1.w2
+ y2.v1.s1
+ y2.w2.v12
+ y2.x1.w2.t1
+ y2.x12.s1
+ y2.x12.w2.v1
+ y2.x13.u2
+ y2.x14.w1
+ y2.w1.r2
- u2.s2 =
x1.v1.t1
+ y2.v1.s1
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s1
+ y2.x14.w2
+ y2.w1.r2
+ y22.v1.t1
- u2.s1 =
w2.v1.u2
+ x1.v1.t1
+ x12.w2.u2
+ x14.v1
+ y2.w2.v12
+ y2.x1.w2.t1
+ y2.x14.w2
+ y2.x14.w1
+ y2.w1.r2
+ y22.v1.t1
- v2.r1 =
x2.v1.t1
+ x2.w1.s1
- v1.r1 =
v13
+ w1.q
+ x2.v1.t1
+ x22.v12
+ x1.w2.s1
+ x12.v12
+ x13.w1.w2
+ x14.v1
+ y2.w2.v12
+ y2.x1.w2.t1
+ y2.x14.w1
+ y2.w1.r2
- w3.q =
x1.w2.s1
+ x12.v12
+ x13.w1.w2
+ y2.w2.v12
+ y2.x12.w2.v1
+ y2.x14.w1
+ y2.w1.r2
+ y22.v1.t1
- w2.q =
w1.q
+ x1.v1.t1
+ x1.w2.s1
+ x12.v12
+ x12.w2.u2
+ x13.w1.w2
+ y2.w2.v12
+ y2.x12.w2.v1
+ y2.x14.w2
+ y2.x14.w1
+ y2.w2.r2
+ y2.w1.r2
- u1.s2 =
y2.v1.s1
+ y2.w2.v12
+ y2.x1.w2.t1
+ y2.x12.w2.v1
+ y2.x13.u2
- u1.s1 =
y2.v1.s1
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x13.u2
+ y2.x14.w2
- t2.s2 =
x2.v1.s1
+ x22.q
+ x22.w1.t1
+ x23.w1.v1
+ x24.u3
+ x12.w2.t1
+ x13.s1
+ x13.w2.v1
+ x15.w2
+ x15.w1
+ y2.w2.v1.u2
+ y2.x1.v1.t1
+ y2.x1.w2.s1
+ y2.x12.v12
+ y2.x12.w2.u2
+ y2.x13.t1
+ y2.x13.w1.w2
+ y2.x14.v1
- t2.s1 =
x22.q
+ x22.w1.t1
+ x12.v1.u2
+ x12.w2.t1
+ x13.s1
+ x14.u2
+ x15.w2
+ x2.w1.r2
+ y2.x12.v12
+ y2.x12.w2.u2
+ y2.x13.t1
+ y2.x13.w1.w2
+ y1.x22.r2
- t1.s2 =
v12.u2
+ w1.v1.t1
+ x2.w1.v12
+ x23.w1.v1
+ x12.v1.u2
+ x13.s1
+ x14.u2
+ x15.w2
+ x1.w1.r2
+ y2.v13
+ y2.x1.w2.s1
+ y2.x13.t1
+ y2.x13.w1.w2
+ y2.x12.r2
- t1.s1 =
v1.q
+ v12.u2
+ w1.v1.t1
+ x22.q
+ x22.w1.t1
+ x12.w2.t1
+ x13.w2.v1
+ x14.u2
+ x15.w1
+ x1.w1.r2
+ y2.x1.v1.t1
+ y2.x1.w2.s1
+ y2.x12.w2.u2
+ y2.x14.v1
+ y2.x16
+ y2.v1.r2
+ y1.x22.r2
- u3.r1 =
w1.v1.t1
+ x2.v1.s1
+ x1.v1.s1
+ x1.w2.v12
+ x13.w2.v1
+ x14.u2
+ y2.w2.v1.u2
+ y2.x12.w2.u2
+ y2.x13.t1
+ y2.x13.w1.w2
+ y2.x14.v1
+ y2.x16
- u2.r1 =
v12.u2
+ x14.u2
+ y2.x12.w2.u2
+ y2.x14.v1
- v2.q =
x2.v1.s1
+ x2.w1.v12
+ x23.w1.v1
- u1.r1 =
y2.v13
+ y2.w2.v1.u2
+ y2.x13.w1.w2
+ y2.x14.v1
- s22 =
x2.v13
+ x23.v12
+ x1.v13
+ x12.v1.t1
+ x13.v12
+ x13.w2.u2
+ x14.t1
+ x15.v1
+ x17
+ x13.r2
+ y2.v12.u2
+ y2.x1.v1.s1
+ y2.x12.w2.t1
+ y2.x1.w1.r2
+ y22.v1.r2
- s1.s2 =
w2.v1.s1
+ x2.w1.q
+ x22.v1.t1
+ x12.v1.t1
+ x12.w2.s1
+ x13.v12
+ x14.w1.w2
+ x17
+ x13.r2
+ y2.x1.v1.s1
+ y2.x1.w2.v12
+ y2.x12.v1.u2
+ y2.x12.w2.t1
+ y2.x13.s1
+ y2.x13.w2.v1
+ y2.x14.u2
+ y22.v1.r2
- s12 =
x2.w1.q
+ x22.v1.t1
+ x22.w1.s1
+ x12.v1.t1
+ x13.v12
+ x13.w2.u2
+ x14.t1
+ x2.v1.r2
+ x13.r2
+ y2.x1.v1.s1
+ y2.x12.w2.t1
+ y2.x14.u2
+ y2.x15.w1
+ y2.x1.w1.r2
+ y22.v1.r2
- t2.r1 =
w1.v1.s1
+ x23.v12
+ x25.v1
+ x12.v1.t1
+ x13.v12
+ x13.w2.u2
+ x14.w1.w2
+ x15.v1
+ x17
+ x2.v2.r2
+ y2.x1.v1.s1
+ y2.x1.w2.v12
+ y2.x12.v1.u2
+ y2.x12.w2.t1
+ y2.x14.u2
+ y2.x15.w2
+ y2.x15.w1
- t1.r1 =
v12.t1
+ w1.v1.s1
+ x22.v1.t1
+ x22.w1.s1
+ x1.w2.v1.u2
+ x12.v1.t1
+ x13.w2.u2
+ x14.t1
+ x15.v1
+ y2.v12.u2
+ y2.w2.v1.t1
+ y2.x1.v1.s1
+ y2.x13.s1
+ y2.x13.w2.v1
+ y2.x14.u2
+ y2.x15.w2
+ y2.x15.w1
- u3.q =
w1.v1.s1
+ x2.v13
+ x23.v12
+ x1.w2.v1.u2
+ x12.v1.t1
+ x13.w2.u2
+ x15.v1
+ y2.v12.u2
+ y2.x1.v1.s1
+ y2.x12.v1.u2
+ y22.v1.r2
- u2.q =
w2.v1.s1
+ w1.v1.s1
+ x1.v13
+ x1.w2.v1.u2
+ x12.v1.t1
+ x15.v1
+ y2.v12.u2
+ y2.w2.v1.t1
+ y2.x1.v1.s1
+ y2.x12.w2.t1
+ y2.x14.u2
+ y2.x15.w2
+ y2.u2.r2
+ y2.x1.w2.r2
+ y22.v13
- u1.q =
y2.w2.v1.t1
+ y2.x1.v1.s1
+ y2.x1.w2.v12
+ y2.x12.v1.u2
+ y2.x14.u2
+ y22.v13
+ y22.v1.r2
- s2.r1 =
v12.s2
+ x2.v1.q
+ x2.w1.v1.t1
+ x22.v1.s1
+ x22.w1.v12
+ x23.w1.t1
+ x25.u3
+ x14.s1
+ x14.w2.v1
+ x16.w2
+ x16.w1
+ y2.x12.w2.s1
+ y2.x13.v12
+ y2.x13.w2.u2
+ y2.x14.w1.w2
+ y1.x24.t2
- s1.r1 =
v12.s1
+ x23.q
+ x23.w1.t1
+ x14.s1
+ x2.u3.r2
+ y2.x12.w2.s1
+ y2.x13.w2.u2
+ y2.x14.t1
+ y2.x14.w1.w2
+ y2.x17
+ y1.t2.r2
+ y1.x23.r2
- t2.q =
x2.v1.q
+ x2.w1.v1.t1
+ x22.v1.s1
+ x23.q
+ x12.v1.s1
+ x12.w2.v12
+ x13.w2.t1
+ x2.u3.r2
+ y2.w2.v1.s1
+ y2.x1.w2.v1.u2
+ y2.x12.v1.t1
+ y2.x12.w2.s1
+ y2.x15.v1
+ y2.x17
+ y2.w1.w2.r2
+ y2.x13.r2
+ y1.x23.r2
- t1.q =
v12.s2
+ v12.s1
+ x2.w1.v1.t1
+ x22.v1.s1
+ x23.w1.t1
+ x24.w1.v1
+ x25.u3
+ x1.w2.v1.t1
+ x12.v1.s1
+ x12.w2.v12
+ x13.w2.t1
+ x15.u2
+ x16.w2
+ x12.w2.r2
+ y2.v12.t1
+ y2.w2.v1.s1
+ y2.x1.w2.v1.u2
+ y2.x14.w1.w2
+ y1.x24.t2
+ y2.t1.r2
+ y2.w1.w2.r2
- r12 =
v14
+ x22.w1.q
+ x23.v1.t1
+ x23.w1.s1
+ x24.v12
+ x18
+ x22.v1.r2
- s2.q =
w2.v12.u2
+ w1.v1.q
+ x2.w1.v1.s1
+ x22.v13
+ x24.v12
+ x12.w2.v1.u2
+ x13.v1.t1
+ x13.w2.s1
+ x14.v12
+ x14.w2.u2
+ x16.v1
+ x1.w1.w2.r2
+ y2.x1.v12.u2
+ y2.x12.v1.s1
+ y2.x12.w2.v12
+ y2.x14.s1
+ y2.x14.w2.v1
+ y2.x15.u2
+ y2.x16.w1
+ y2.s1.r2
+ y2.w2.v1.r2
+ y2.x1.u2.r2
+ y2.x12.w2.r2
+ y2.x12.w1.r2
+ y22.v12.t1
+ y22.t1.r2
- s1.q =
w2.v12.u2
+ w1.v1.q
+ x2.v12.t1
+ x2.w1.v1.s1
+ x1.v12.t1
+ x15.w1.w2
+ x16.v1
+ x2.t1.r2
+ x22.v2.r2
+ x1.w1.w2.r2
+ y2.v12.s1
+ y2.x1.v12.u2
+ y2.x1.w2.v1.t1
+ y2.x13.w2.t1
+ y2.x14.s1
+ y2.x14.w2.v1
+ y2.s1.r2
+ y2.x1.u2.r2
+ y2.x12.w2.r2
+ y22.v12.t1
+ y22.t1.r2
- r1.q =
v12.q
+ x2.v12.s1
+ x22.w1.v1.t1
+ x14.w2.t1
+ x16.u2
+ x2.w1.v1.r2
+ y2.x13.v1.t1
+ y2.x14.w2.u2
+ y2.x15.t1
+ y2.x15.w1.w2
+ y2.x16.v1
+ y2.x18
+ y2.x14.r2
- q2 =
x2.v14
+ x2.w1.v1.q
+ x22.v12.t1
+ x22.w1.v1.s1
+ x25.v12
+ x1.v14
+ x12.v12.t1
+ x13.v13
+ x13.w2.v1.u2
+ x14.v1.t1
+ x17.v1
+ x2.v12.r2
+ x13.v1.r2
+ y2.v13.u2
+ y2.x1.v12.s1
+ y2.x12.w2.v1.t1
+ y2.x14.v1.u2
+ y2.x12.u2.r2
+ y22.v14
+ y22.r22
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y22.x12 =
0
- y2.w1.v1 =
y2.x1.u2
+ y22.t1
- y22.x1.v1 =
0
- x1.w1.v1 =
x12.u2
+ y2.x1.t1
+ y2.x1.w1.w2
- w1.w2.v1 =
x2.v12
+ x1.w2.u2
+ y2.w2.t1
+ y2.x12.u2
+ y22.v12
- y2.w1.t1 =
y2.x1.s1
+ y2.x1.w2.v1
+ y2.x13.w2
+ y2.x13.w1
+ y22.v12
- y22.x1.t1 =
0
- x1.w1.t1 =
x12.s1
+ x12.w2.v1
+ x14.w2
+ x14.w1
+ y2.x1.v12
+ y2.x1.w2.u2
+ y2.x12.w1.w2
+ y2.x13.v1
- y2.w1.s1 =
y2.x1.w2.u2
+ y2.x12.t1
+ y2.x12.w1.w2
+ y2.x15
- w1.w2.t1 =
x2.v1.t1
+ x1.w2.s1
+ x12.v12
+ x13.w1.w2
+ x14.v1
+ y2.w2.v12
+ y2.x12.w2.v1
+ y22.v1.t1
- x1.w1.s1 =
x12.w2.u2
+ x13.t1
+ x13.w1.w2
+ x16
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s1
- w1.w2.s1 =
x2.v1.s1
+ x12.v1.u2
+ x12.w2.t1
+ x14.u2
+ x15.w2
+ y2.w2.v1.u2
+ y2.x1.v1.t1
+ y2.x1.w2.s1
+ y2.x12.v12
+ y2.x13.t1
+ y2.x13.w1.w2
+ y2.x14.v1
Essential ideal:
There is one minimal generator:
Nilradical:
There are 3 minimal generators:
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 18 onwards, and
Carlson's tests detect stability from degree 18
onwards.
This cohomology ring has dimension 3 and depth 1.
Here is a homogeneous system of parameters:
- h1 =
r2
in degree 8
- h2 =
x2
+ x1
in degree 2
- h3 =
v1
in degree 4
The first
term h1 forms
a regular sequence of maximum length.
The remaining
2 terms h2, h3 are all
annihilated by the class
y22.x1.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
The ideal of essential classes is
free of rank 1 as a module over the polynomial algebra
on h1.
These free generators are:
The essential ideal squares to zero.
A basis for R/(h1, h2, h3) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 14.
-
1
in degree 0
-
y2
in degree 1
-
y1
in degree 1
-
x1
in degree 2
-
y22
in degree 2
-
w3
in degree 3
-
w2
in degree 3
-
w1
in degree 3
-
v2
in degree 4
-
y2.w2
in degree 4
-
y2.w1
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
t2
in degree 6
-
t1
in degree 6
-
w1.w2
in degree 6
-
y2.u2
in degree 6
-
s2
in degree 7
-
s1
in degree 7
-
y1.t2
in degree 7
-
r1
in degree 8
-
w2.u2
in degree 8
-
y2.s1
in degree 8
-
q
in degree 9
-
w2.t1
in degree 9
-
w2.s1
in degree 10
-
y2.w2.s1
in degree 11
A basis for AnnR/(h1, h2)(h3) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 10.
-
y1
in degree 1
-
y1.t2
in degree 7
A basis for AnnR/(h1)(h2, h3) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 8.
A basis for AnnR/(h1)(h2)
/ h3 AnnR/(h1)(h2) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 12.
-
y22.x1
in degree 4
-
y22.v1
in degree 6
-
y22.t1
in degree 8
Restriction to maximal subgroup number 1, which is 32gp30
- y1 restricts to
0
- y2 restricts to
y1
- x1 restricts to
y22
+ y1.y2
- x2 restricts to
y32
- w1 restricts to
y23
+ y3.x
+ y1.x
- w2 restricts to
w1
+ y23
+ y3.x
+ y2.x
+ y1.y22
+ y1.x
- w3 restricts to
y23
+ y1.y22
+ y1.x
- v1 restricts to
y24
+ y22.x
+ x2
+ y1.w1
+ y12.x
- v2 restricts to
y32.x
- u1 restricts to
y1.y2.w1
+ y1.x2
- u2 restricts to
y25
+ y23.x
+ y2.x2
+ y1.y2.w1
+ y1.y24
+ y1.v
+ y1.x2
- u3 restricts to
y3.x2
+ y1.y22.x
+ y1.x2
- t1 restricts to
y23.w1
+ y26
+ y34.x
+ y22.v
+ y24.x
+ y22.x2
+ x3
+ y1.y2.v
+ y1.y2.x2
+ y12.v
+ y12.x2
- t2 restricts to
y23.w1
+ y3.x.w2
+ y32.v
+ y24.x
+ y1.y22.w1
+ y1.x.w1
+ y12.v
+ y12.x2
- s1 restricts to
y24.w1
+ y35.x
+ y22.x.w1
+ y23.v
+ x2.w2
+ x2.w1
+ y3.x.v
+ y23.x2
+ y2.x3
+ y1.y26
+ y1.y2.x.w1
+ y1.y24.x
+ y1.x.v
+ y1.y22.x2
- s2 restricts to
y24.w1
+ y27
+ y23.v
+ y25.x
+ y33.x2
+ y23.x2
+ y3.x3
+ y2.x3
+ y1.y23.w1
+ y1.y2.x.w1
+ y1.y22.v
+ y1.x.v
+ y1.y22.x2
+ y1.x3
- r1 restricts to
y36.x
+ y3.x2.w2
+ y32.x.v
+ y34.x2
+ y24.x2
+ x4
+ y1.y24.w1
+ y1.y25.x
+ y12.x3
- r2 restricts to
y25.w1
+ y33.x.w2
+ y34.v
+ y36.x
+ v2
+ y3.x2.w2
+ y32.x.v
+ y22.x.v
+ y24.x2
+ x2.v
+ y1.y27
+ y1.w1.v
+ y1.y22.x.w1
+ y1.y23.v
+ y1.y25.x
+ y1.y2.x3
- q restricts to
y22.w1.v
+ y25.v
+ y22.x2.w1
+ y23.x.v
+ y25.x2
+ x3.w2
+ x3.w1
+ y3.x2.v
+ y3.x4
+ y1.y23.x.w1
+ y1.y24.v
+ y1.y26.x
+ y1.v2
+ y1.x2.v
Restriction to maximal subgroup number 2, which is 32gp6
- y1 restricts to
y1
- y2 restricts to
0
- x1 restricts to
y22
- x2 restricts to
x3
- w1 restricts to
w2
+ y23
- w2 restricts to
w2
+ y2.x2
+ y23
+ y1.x1
- w3 restricts to
y23
- v1 restricts to
x22
+ x12
+ y24
- v2 restricts to
x1.x3
+ x12
- u1 restricts to
y1.v
- u2 restricts to
y2.x22
+ y25
+ y1.x12
- u3 restricts to
x1.w2
+ x1.w1
+ y1.x12
+ y1.v
- t1 restricts to
x23
+ x1.x32
+ x1.x22
+ x12.x3
+ x12.x2
+ x13
+ y2.x2.w1
+ y24.x2
+ y26
+ y22.v
- t2 restricts to
x1.x32
+ x13
+ y24.x2
+ x3.v
- s1 restricts to
x32.w2
+ x1.x3.w2
+ x12.w1
+ y22.x2.w1
+ y23.x22
+ y25.x2
+ w2.v
+ y23.v
+ y1.x13
- s2 restricts to
x1.x3.w2
+ x1.x2.w1
+ y2.x23
+ y22.x2.w1
+ y25.x2
+ y27
+ y23.v
+ y1.x3.v
- r1 restricts to
x24
+ x1.x33
+ x12.x32
+ x13.x3
+ x13.x2
+ x14
+ x1.x3.v
+ x12.v
- r2 restricts to
x12.x32
+ x12.x22
+ x13.x2
+ x14
+ y24.x22
+ y26.x2
+ x32.v
+ x1.x3.v
+ x12.v
+ v2
- q restricts to
x1.x22.w1
+ x12.x3.w2
+ y2.x24
+ y22.x22.w1
+ y23.x23
+ y24.x2.w1
+ x1.w2.v
+ x1.w1.v
+ y23.x2.v
+ y25.v
+ y1.x32.v
+ y1.x12.v
+ y1.v2
Restriction to maximal subgroup number 3, which is 32gp7
- y1 restricts to
y1
- y2 restricts to
y1
- x1 restricts to
x2
- x2 restricts to
x2
+ y22
- w1 restricts to
w2
+ y2.x2
+ y2.x1
- w2 restricts to
y2.x2
+ y2.x1
- w3 restricts to
y2.x2
- v1 restricts to
x12
+ y22.x2
- v2 restricts to
y2.w2
+ y22.x1
- u1 restricts to
y1.v2
- u2 restricts to
x1.w2
+ y23.x2
+ y1.v2
- u3 restricts to
x1.w2
+ y2.x12
+ y1.v2
- t1 restricts to
x1.v1
+ y2.x1.w2
+ y22.v1
+ y22.x12
+ y24.x1
+ x2.v2
- t2 restricts to
y23.w2
+ x2.v2
+ y22.v2
- s1 restricts to
y2.x1.v1
+ y2.x13
+ y23.v1
+ y23.x12
+ y25.x2
+ y25.x1
+ w2.v2
+ y2.x2.v2
+ y2.x1.v2
- s2 restricts to
y2.x1.v1
+ y23.v1
+ y24.w2
+ y2.x2.v2
- r1 restricts to
x14
+ y23.x1.w2
+ y24.x12
+ y25.w2
+ y26.x1
+ y2.w2.v2
+ y22.x1.v2
- r2 restricts to
y2.x12.w2
+ y22.x1.v1
+ y22.x13
+ y24.v1
+ y24.x12
+ y26.x2
+ y26.x1
+ y2.w2.v2
+ y22.x1.v2
+ y24.v2
+ v22
- q restricts to
y2.x12.v1
+ y24.x1.w2
+ y25.v1
+ y25.x12
+ y26.w2
+ y27.x2
+ x1.w2.v2
+ y2.x12.v2
+ y22.w2.v2
+ y23.x2.v2
Restriction to maximal elementary abelian number 1, which is V8
- y1 restricts to
0
- y2 restricts to
0
- x1 restricts to
0
- x2 restricts to
y32
+ y22
+ y12
- w1 restricts to
y2.y32
+ y22.y3
+ y1.y32
+ y12.y3
- w2 restricts to
y2.y32
+ y22.y3
+ y1.y32
+ y12.y3
- w3 restricts to
0
- v1 restricts to
y22.y32
+ y12.y32
- v2 restricts to
y2.y33
+ y23.y3
+ y1.y33
+ y1.y22.y3
+ y12.y2.y3
+ y13.y3
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
y22.y33
+ y23.y32
+ y1.y22.y32
+ y12.y33
+ y12.y2.y32
+ y13.y32
- t1 restricts to
y2.y35
+ y23.y33
+ y25.y3
+ y1.y35
+ y1.y22.y33
+ y1.y24.y3
+ y12.y2.y33
+ y13.y33
+ y14.y2.y3
+ y15.y3
- t2 restricts to
y1.y2.y34
+ y1.y22.y33
+ y1.y23.y32
+ y1.y24.y3
+ y12.y2.y33
+ y12.y22.y32
+ y12.y23.y3
+ y12.y24
+ y13.y2.y32
+ y13.y22.y3
+ y14.y2.y3
+ y14.y22
- s1 restricts to
y2.y36
+ y22.y35
+ y25.y32
+ y26.y3
+ y1.y36
+ y1.y22.y34
+ y12.y35
+ y12.y2.y34
+ y15.y32
+ y16.y3
- s2 restricts to
y22.y35
+ y25.y32
+ y1.y24.y32
+ y12.y35
+ y14.y2.y32
+ y15.y32
- r1 restricts to
y2.y37
+ y22.y36
+ y23.y35
+ y24.y34
+ y25.y33
+ y26.y32
+ y27.y3
+ y1.y37
+ y1.y23.y34
+ y1.y25.y32
+ y1.y26.y3
+ y12.y36
+ y12.y24.y32
+ y13.y35
+ y13.y2.y34
+ y14.y34
+ y14.y22.y32
+ y15.y33
+ y15.y2.y32
+ y16.y32
+ y16.y2.y3
+ y17.y3
- r2 restricts to
y2.y37
+ y23.y35
+ y25.y33
+ y27.y3
+ y1.y37
+ y1.y2.y36
+ y1.y22.y35
+ y1.y23.y34
+ y12.y2.y35
+ y12.y24.y32
+ y12.y25.y3
+ y12.y26
+ y13.y35
+ y13.y2.y34
+ y14.y22.y32
+ y14.y24
+ y15.y33
+ y15.y22.y3
+ y16.y22
+ y17.y3
- q restricts to
y24.y35
+ y25.y34
+ y1.y23.y35
+ y1.y24.y34
+ y1.y25.y33
+ y12.y24.y33
+ y12.y25.y32
+ y13.y2.y35
+ y13.y24.y32
+ y14.y35
+ y14.y2.y34
+ y14.y22.y33
+ y14.y23.y32
+ y15.y34
+ y15.y2.y33
+ y15.y22.y32
Restriction to maximal elementary abelian number 2, which is V8
- y1 restricts to
0
- y2 restricts to
0
- x1 restricts to
y32
- x2 restricts to
0
- w1 restricts to
y33
- w2 restricts to
y33
+ y2.y32
+ y22.y3
+ y1.y32
+ y12.y3
- w3 restricts to
y33
- v1 restricts to
y34
+ y22.y32
+ y24
+ y12.y32
+ y14
- v2 restricts to
0
- u1 restricts to
0
- u2 restricts to
y35
+ y22.y33
+ y24.y3
+ y12.y33
+ y14.y3
- u3 restricts to
0
- t1 restricts to
y36
+ y2.y35
+ y26
+ y1.y35
+ y12.y34
+ y12.y24
+ y14.y32
+ y14.y22
+ y16
- t2 restricts to
y2.y35
+ y22.y34
+ y1.y35
+ y12.y34
- s1 restricts to
y2.y36
+ y22.y35
+ y23.y34
+ y25.y32
+ y1.y36
+ y1.y22.y34
+ y1.y24.y32
+ y12.y2.y34
+ y13.y34
+ y14.y33
+ y14.y2.y32
+ y15.y32
- s2 restricts to
y37
+ y2.y36
+ y26.y3
+ y1.y36
+ y12.y35
+ y12.y24.y3
+ y14.y33
+ y14.y22.y3
+ y16.y3
- r1 restricts to
y24.y34
+ y28
+ y14.y34
+ y18
- r2 restricts to
y2.y37
+ y24.y34
+ y1.y37
+ y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
- q restricts to
y22.y37
+ y23.y36
+ y24.y35
+ y26.y33
+ y27.y32
+ y28.y3
+ y1.y22.y36
+ y1.y26.y32
+ y12.y22.y35
+ y12.y24.y33
+ y12.y25.y32
+ y13.y24.y32
+ y14.y35
+ y14.y2.y34
+ y14.y23.y32
+ y15.y34
+ y15.y22.y32
+ y16.y2.y32
+ y17.y32
+ y18.y3
Restriction to the greatest central elementary abelian, which is C2
- y1 restricts to
0
- y2 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- w3 restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- t1 restricts to
0
- t2 restricts to
0
- s1 restricts to
0
- s2 restricts to
0
- r1 restricts to
0
- r2 restricts to
y8
- q restricts to
0
(1 + 2t + 2t2
+ 3t3 + 3t4 + 2t5
+ 3t6 + 3t7 + 2t8
+ 2t9 + t10) /
(1 - t2) (1 - t4) (1 - t8)
Back to the groups of order 64