Small group number 8 of order 625
G is the group 625gp8
G has 2 minimal generators, rank 3 and exponent 25.
The centre has rank 1.
The 6 maximal subgroups are:
M125 (5x), V125.
There is one conjugacy class of maximal elementary abelian
subgroups. Each maximal elementary abelian has rank 3.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 20 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1, a nilpotent element
- x1 in degree 2, a nilpotent element
- x2 in degree 2, a nilpotent element
- x3 in degree 2
- w1 in degree 3, a nilpotent element
- w2 in degree 3, a nilpotent element
- v1 in degree 4, a nilpotent element
- v2 in degree 4
- u in degree 5, a nilpotent element
- t in degree 6, a nilpotent element
- s in degree 7, a nilpotent element
- r in degree 8, a nilpotent element
- q1 in degree 9, a nilpotent element
- q2 in degree 9, a nilpotent element
- p1 in degree 10, a nilpotent element
- p2 in degree 10
- p3 in degree 10, a regular element
- o in degree 11, a nilpotent element
- n in degree 12, a nilpotent element
There are 151 minimal relations:
- y22 =
0
- y1.y2 =
0
- y12 =
0
- y1.x3 =
- y1.x2
- y2.x2 =
2y1.x2
- y2.x1 =
y1.x2
- y1.x1 =
0
- x2.x3 =
y2.w1
- x1.x3 =
0
- x22 =
0
- x1.x2 =
0
- x12 =
0
- y1.w2 =
0
- y1.w1 =
0
- x3.w2 =
- 2x3.w1
+ 2y1.v2
- y2.v1
- x2.w2 =
y2.v1
- x2.w1 =
0
- x1.w2 =
0
- x1.w1 =
0
- y1.v1 =
0
- x3.v1 =
w1.w2
+ 2y2.x3.w1
- x1.v2 =
- 2w1.w2
- w22 =
0
- w12 =
0
- x2.v1 =
0
- x1.v1 =
0
- y1.u =
0
- w2.v2 =
- 2w1.v2
+ 2y2.w1.w2
- w2.v1 =
0
- w1.v1 =
- 2y2.w1.w2
- x2.u =
y2.t
+ 2y2.w1.w2
- x1.u =
0
- y1.t =
y2.w1.w2
- v1.v2 =
2y2.w1.v2
- x3.t =
w1.u
- y2.w1.v2
- 2y2.x3.u
- v12 =
0
- w2.u =
- 2w1.u
- x2.t =
0
- x1.t =
0
- y1.s =
0
- v2.u =
x3.s
- 2x3.w1.v2
- 2x32.u
- x33.w1
- 2y2.v22
+ y2.r
+ 2y2.w1.u
- v1.u =
2y2.w1.u
- w2.t =
y2.w1.u
- w1.t =
2y2.w1.u
- x2.s =
y2.r
+ y2.w1.u
- x1.s =
0
- y1.r =
0
- v2.t =
w1.s
- 2x3.w1.u
+ y2.q1
- 2y2.x3.s
+ y2.x3.w1.v2
- 2y2.x33.w1
- x3.r =
w1.s
- x3.w1.u
+ y2.q1
+ 2y2.x32.u
- x2.v22 =
y2.q1
+ 2y2.x3.w1.v2
+ y2.x32.u
+ y2.x33.w1
- u2 =
0
- v1.t =
0
- w2.s =
- 2w1.s
- x2.r =
0
- x1.r =
0
- y1.q2 =
0
- y1.q1 =
0
- w1.v22 =
x3.q1
+ 2x32.w1.v2
+ x33.u
+ x34.w1
- y2.p2
+ y2.x3.v22
- 2y2.x33.v2
- y2.p1
- y2.w1.s
+ y2.x3.w1.u
- y1.p2 =
0
- u.t =
- y2.w1.s
+ 2y2.x3.w1.u
- v1.s =
2y2.w1.s
- w2.r =
2y2.x3.w1.u
- w1.r =
- y2.x3.w1.u
- x2.q2 =
y2.p1
- 2y2.w1.s
+ y2.x3.w1.u
- x2.q1 =
- y2.x3.w1.u
- x1.q2 =
0
- x1.q1 =
0
- y1.p1 =
0
- v2.r =
w1.q2
+ 2x3.w1.s
+ x32.w1.u
+ 2y2.v2.s
- 2y2.x3.q2
+ y2.x3.q1
- 2y2.x32.w1.v2
+ y2.x33.u
- 2y2.x34.w1
- x3.p1 =
w1.q2
+ 2x3.w1.s
- x32.w1.u
+ y2.o
+ 2y2.v2.s
+ y2.x3.q1
+ 2y2.x32.s
- 2y2.x32.w1.v2
+ y2.x33.u
+ 2y2.x34.w1
- x2.p2 =
- y2.v2.s
+ y2.x3.q2
- 2y2.x32.s
+ 2y2.x32.w1.v2
- y2.x33.u
+ y2.x34.w1
- x1.p2 =
0
- t2 =
0
- u.s =
- 2x3.w1.s
- 2x32.w1.u
- 2y2.v2.s
- y2.x32.s
- y2.x32.w1.v2
+ 2y2.x33.u
+ y2.x34.w1
- v1.r =
0
- w2.q2 =
- 2w1.q2
- w2.q1 =
2x32.w1.u
- 2y2.v2.s
+ 2y2.x3.q2
- 2y2.x3.q1
+ y2.x32.s
- y2.x32.w1.v2
+ y2.x33.u
- w1.q1 =
- x32.w1.u
+ y2.v2.s
- y2.x3.q2
+ y2.x3.q1
+ 2y2.x32.s
- 2y2.x32.w1.v2
+ 2y2.x33.u
- x2.p1 =
0
- x1.p1 =
0
- y1.o =
0
- w2.p2 =
2x3.v2.s
- 2x32.q2
- x33.s
+ x33.w1.v2
+ 2x34.u
- 2x35.w1
- 2y2.v23
+ y2.x3.p2
+ y2.x34.v2
- 2y2.n
- y2.w1.q2
+ 2y2.x3.w1.s
- w1.p2 =
- x3.v2.s
+ x32.q2
- 2x33.s
+ 2x33.w1.v2
- x34.u
+ x35.w1
+ y2.v23
+ 2y2.x3.p2
+ 2y2.x34.v2
+ y2.n
- 2y2.w1.q2
- y2.x3.w1.s
- t.s =
y2.w1.q2
- 2y2.x3.w1.s
+ y2.x32.w1.u
- u.r =
- y2.w1.q2
+ 2y2.x3.w1.s
- v1.q2 =
2y2.w1.q2
- v1.q1 =
- 2y2.x32.w1.u
- w2.p1 =
2y2.n
- y2.x32.w1.u
- w1.p1 =
- y2.n
- 2y2.x32.w1.u
- x2.o =
y2.n
- 2y2.w1.q2
+ 2y2.x3.w1.s
- y2.x32.w1.u
- x1.o =
0
- y1.n =
0
- v1.p2 =
- 2y2.x3.v2.s
+ 2y2.x32.q2
+ y2.x33.s
- y2.x33.w1.v2
- 2y2.x34.u
+ 2y2.x35.w1
- x3.n =
w1.o
+ 2x3.w1.q2
- 2x32.w1.s
+ x33.w1.u
- y2.v2.q2
- 2y2.v2.q1
- y2.x3.o
+ 2y2.x3.v2.s
- y2.x32.q2
+ y2.x32.q1
+ 2y2.x33.s
+ y2.x33.w1.v2
- y2.x34.u
- y2.x35.w1
- s2 =
0
- t.r =
0
- u.q2 =
- w1.o
+ 2x3.w1.q2
- 2x33.w1.u
- y2.v2.q2
+ 2y2.v2.q1
+ 2y2.x3.o
+ y2.x3.v2.s
+ y2.x32.q2
- 2y2.x32.q1
+ y2.x33.s
- y2.x33.w1.v2
- 2y2.x34.u
- y2.x35.w1
- u.q1 =
- x3.w1.q2
+ x32.w1.s
- x33.w1.u
- 2y2.v2.q1
- y2.x3.o
- 2y2.x3.v2.s
+ 2y2.x32.q2
+ y2.x32.q1
- 2y2.x33.s
+ 2y2.x33.w1.v2
- y2.x34.u
+ 2y2.x35.w1
- v1.p1 =
0
- w2.o =
- 2w1.o
- x2.n =
0
- x1.n =
0
- u.p2 =
x3.v2.q1
+ x32.o
+ x32.v2.s
- 2x33.q1
- 2x34.s
- 2x35.u
- x36.w1
- 2y2.v2.p2
+ 2y2.x32.p2
+ y2.x33.v22
- y2.x35.v2
- 2y2.x32.w1.s
- y2.x33.w1.u
- s.r =
y2.v2.p1
+ 2y2.x3.w1.q2
+ 2y2.x32.w1.s
- 2y2.x33.w1.u
- t.q2 =
- y2.x3.w1.q2
- 2y2.x32.w1.s
+ y2.x33.w1.u
- t.q1 =
y2.w1.o
+ 2y2.x3.w1.q2
- y2.x33.w1.u
- u.p1 =
- 2y2.v2.p1
+ 2y2.w1.o
- 2y2.x3.w1.q2
+ y2.x32.w1.s
- y2.x33.w1.u
- v1.o =
2y2.w1.o
- w2.n =
- 2y2.v2.p1
- 2y2.w1.o
+ y2.x3.w1.q2
- y2.x33.w1.u
- w1.n =
y2.v2.p1
+ y2.w1.o
+ 2y2.x3.w1.q2
- 2y2.x33.w1.u
- t.p2 =
x3.w1.o
+ x32.w1.q2
+ x34.w1.u
- 2y2.x3.v2.q1
- 2y2.x32.o
- 2y2.x33.q2
+ 2y2.x33.q1
- 2y2.x34.s
- y2.x35.u
- 2y2.x36.w1
- v2.n =
- s.q2
+ w1.v2.q2
- 2x3.w1.o
- 2x32.w1.q2
- 2x33.w1.s
+ y2.v2.o
- 2y2.v22.s
- 2y2.x3.v2.q2
- y2.x32.o
+ y2.x32.v2.s
+ y2.x33.q2
- 2y2.x33.q1
- 2y2.x34.s
+ y2.x34.w1.v2
+ y2.x35.u
- r2 =
0
- s.q1 =
- w1.v2.q2
- x32.w1.q2
+ 2x33.w1.s
+ 2x34.w1.u
- y2.v2.o
- 2y2.x3.v2.q1
- 2y2.x32.o
+ y2.x32.v2.s
+ y2.x33.q2
- 2y2.x33.q1
- y2.x34.s
- 2y2.x34.w1.v2
- 2y2.x35.u
- t.p1 =
0
- u.o =
w1.v2.q2
- x32.w1.q2
- x33.w1.s
+ x34.w1.u
- y2.v2.o
+ 2y2.v22.s
- 2y2.x3.v2.q2
- y2.x32.v2.s
+ 2y2.x33.q2
- y2.x33.q1
- 2y2.x34.s
+ 2y2.x34.w1.v2
- 2y2.x35.u
- y2.x36.w1
- v1.n =
0
- s.p2 =
v22.q1
+ x3.v2.o
- x3.v22.s
+ 2x32.v2.q2
+ 2x33.o
+ x34.q2
- x35.w1.v2
+ 2x36.u
+ 2x37.w1
+ 2y2.v24
+ 2y2.x3.v2.p2
+ 2y2.x32.v23
+ 2y2.x33.p2
+ 2y2.x34.v22
+ 2y2.x36.v2
- y2.s.q2
- 2y2.w1.v2.q2
+ y2.x3.w1.o
+ y2.x33.w1.s
- 2y2.x34.w1.u
+ 2y2.w1.w2.p3
- r.q2 =
2y2.s.q2
- y2.w1.v2.q2
+ y2.x3.w1.o
+ 2y2.x32.w1.q2
- 2y2.x33.w1.s
- 2y2.x34.w1.u
- 2y2.w1.w2.p3
- r.q1 =
- y2.s.q2
- y2.w1.v2.q2
- y2.x3.w1.o
+ y2.x32.w1.q2
- y2.x34.w1.u
- s.p1 =
- 2y2.x3.w1.o
+ y2.x32.w1.q2
+ 2y2.x33.w1.s
- y2.x34.w1.u
- 2y2.w1.w2.p3
- t.o =
- 2y2.w1.v2.q2
+ y2.x33.w1.s
- u.n =
2y2.s.q2
+ y2.w1.v2.q2
+ 2y2.x3.w1.o
- 2y2.x32.w1.q2
- y2.x33.w1.s
+ y2.x34.w1.u
- r.p2 =
- x3.s.q2
- x32.w1.o
+ x33.w1.q2
- x34.w1.s
- x35.w1.u
+ y2.v22.q2
+ 2y2.v22.q1
+ 2y2.x3.v2.o
- y2.x3.v22.s
+ y2.x32.v2.q2
+ y2.x32.v2.q1
- 2y2.x33.v2.s
- y2.x34.q2
+ 2y2.x34.q1
+ 2y2.x35.w1.v2
+ 2y2.x36.u
- 2y2.x37.w1
- v22.p1 =
s.o
+ 2x3.s.q2
- 2x3.w1.v2.q2
- 2x32.w1.o
- 2x33.w1.q2
- 2x34.w1.s
- x35.w1.u
- 2y2.x3.v2.o
+ y2.x3.v22.s
- 2y2.x32.v2.q1
+ 2y2.x33.o
+ 2y2.x33.v2.s
- 2y2.x34.q1
+ 2y2.x35.s
+ y2.x36.u
- y2.x37.w1
- q22 =
0
- q1.q2 =
s.o
+ 2x3.s.q2
- x3.w1.v2.q2
- x32.w1.o
- 2x34.w1.s
+ x35.w1.u
- 2y2.v22.q2
+ 2y2.x3.v2.o
- 2y2.x3.v22.s
+ 2y2.x32.v2.q2
- y2.x32.v2.q1
- y2.x33.v2.s
- y2.x34.q2
- 2y2.x34.q1
+ 2y2.x35.s
+ 2y2.x35.w1.v2
- y2.x36.u
+ 2y2.x37.w1
- 2y2.x32.w1.p3
- q12 =
0
- r.p1 =
0
- t.n =
0
- q2.p2 =
v22.o
+ 2v23.s
- x3.v22.q2
- x3.v22.q1
- x32.v2.o
- 2x32.v22.s
+ 2x35.q1
- x36.s
+ 2x36.w1.v2
- x37.u
- 2x38.w1
- y2.x3.v24
- y2.x32.v2.p2
- y2.x33.v23
+ 2y2.x35.v22
+ y2.x37.v2
- 2x33.w1.p3
- y2.x34.p3
- y2.s.o
+ 2y2.x3.s.q2
- y2.x3.w1.v2.q2
- 2y2.x32.w1.o
+ y2.x33.w1.q2
- 2y2.x34.w1.s
- 2y2.x35.w1.u
- 2y2.w1.u.p3
- q1.p2 =
- v23.s
+ x3.v22.q2
- 2x33.v2.q2
+ x33.v2.q1
- x34.o
- 2x34.v2.s
- x35.q2
- 2x36.w1.v2
- x37.u
+ 2x38.w1
- 2y2.v22.p2
+ 2y2.x3.v24
+ 2y2.x34.p2
- 2y2.x35.v22
- 2y2.x37.v2
- 2y2.x34.p3
+ y2.s.o
- y2.x32.w1.o
- 2y2.x33.w1.q2
- 2y2.x34.w1.s
- 2y2.x35.w1.u
- q2.p1 =
y2.x3.s.q2
- 2y2.x3.w1.v2.q2
- 2y2.x32.w1.o
- y2.x34.w1.s
- y2.x35.w1.u
+ 2y2.w1.u.p3
- q1.p1 =
- 2y2.s.o
- 2y2.x3.s.q2
- y2.x3.w1.v2.q2
- y2.x33.w1.q2
- y2.x34.w1.s
+ y2.x35.w1.u
- r.o =
y2.x3.s.q2
+ y2.x32.w1.o
+ y2.x33.w1.q2
- y2.x34.w1.s
- s.n =
- y2.x3.s.q2
+ y2.x35.w1.u
- p22 =
- v25
+ 2x3.v22.p2
- x32.v24
+ 2x33.v2.p2
- x35.p2
+ x36.v22
- 2x35.p3
+ 2v2.s.q2
+ 2x3.s.o
- 2x32.s.q2
+ x33.w1.o
+ 2x34.w1.q2
- 2x36.w1.u
- y2.x3.v22.q2
+ 2y2.x3.v22.q1
+ 2y2.x32.v22.s
- 2y2.x33.v2.q2
+ y2.x33.v2.q1
+ 2y2.x34.o
- 2y2.x35.q2
- y2.x35.q1
+ 2y2.x36.s
- y2.x36.w1.v2
+ y2.x37.u
- y2.x32.u.p3
- 2y2.x33.w1.p3
- p1.p2 =
- v2.s.q2
+ x32.s.q2
+ 2x32.w1.v2.q2
+ 2x34.w1.q2
- 2x35.w1.s
+ x36.w1.u
+ y2.x3.v22.q1
+ y2.x32.v2.o
+ y2.x32.v22.s
+ 2y2.x33.v2.q2
+ 2y2.x33.v2.q1
- 2y2.x34.o
- 2y2.x34.v2.s
+ y2.x35.q2
+ y2.x35.q1
+ y2.x36.s
+ 2y2.x36.w1.v2
+ 2y2.x37.u
+ y2.x38.w1
- 2y2.x32.u.p3
+ y2.x33.w1.p3
- p12 =
0
- q2.o =
2v2.s.q2
- x3.s.o
- 2x32.s.q2
+ x33.w1.o
- 2x34.w1.q2
+ 2x35.w1.s
- x36.w1.u
+ y2.x3.v22.q2
+ y2.x32.v2.o
- 2y2.x32.v22.s
- y2.x33.v2.q2
- 2y2.x33.v2.q1
+ 2y2.x34.o
+ y2.x35.q2
+ 2y2.x35.q1
- 2y2.x36.s
- y2.x36.w1.v2
- 2y2.x37.u
+ y2.x38.w1
- 2x3.w1.u.p3
+ 2y2.x3.w1.v2.p3
- y2.x32.u.p3
- q1.o =
- v2.s.q2
- x3.s.o
+ 2x32.s.q2
+ 2x32.w1.v2.q2
- x33.w1.o
+ x34.w1.q2
+ 2x36.w1.u
- 2y2.v22.o
+ 2y2.x3.v22.q2
- y2.x32.v2.o
- y2.x33.v2.q2
+ 2y2.x34.v2.s
- y2.x35.q1
- y2.x36.w1.v2
- y2.x37.u
- y2.x38.w1
- 2y2.x32.u.p3
- r.n =
0
- p2.o =
- v23.q2
- 2v23.q1
+ x3.v22.o
+ 2x3.v23.s
+ 2x32.v22.q2
+ 2x32.v22.q1
- 2x33.v2.o
- 2x33.v22.s
+ x34.v2.q1
- 2x35.o
+ 2x35.v2.s
+ x36.q2
+ x36.q1
- 2x37.s
- x37.w1.v2
- 2x38.u
- x39.w1
+ y2.v25
- y2.x32.v24
- 2y2.x34.v23
+ y2.x35.p2
+ 2y2.x36.v22
- 2x33.u.p3
- 2y2.x33.v2.p3
+ y2.v2.s.q2
+ 2y2.x32.s.q2
+ y2.x34.w1.q2
+ y2.x35.w1.s
- y2.x36.w1.u
- 2y2.x3.w1.u.p3
- p1.o =
2y2.x32.s.q2
+ 2y2.x32.w1.v2.q2
- 2y2.x33.w1.o
- y2.x34.w1.q2
+ y2.x3.w1.u.p3
- q2.n =
y2.v2.s.q2
+ 2y2.x3.s.o
- 2y2.x32.s.q2
- 2y2.x32.w1.v2.q2
+ y2.x33.w1.o
- y2.x34.w1.q2
+ y2.x35.w1.s
- 2y2.x36.w1.u
+ 2y2.x3.w1.u.p3
- q1.n =
2y2.v2.s.q2
- 2y2.x3.s.o
+ y2.x32.s.q2
- 2y2.x32.w1.v2.q2
+ 2y2.x34.w1.q2
- y2.x35.w1.s
- 2y2.x36.w1.u
- 2y2.x3.w1.u.p3
- p2.n =
- v2.s.o
+ 2x32.s.o
- x33.s.q2
+ x33.w1.v2.q2
+ x34.w1.o
- x35.w1.q2
+ x36.w1.s
- 2x37.w1.u
+ y2.v23.q1
+ 2y2.x3.v22.o
+ y2.x32.v22.q2
- y2.x32.v22.q1
+ 2y2.x33.v2.o
- y2.x33.v22.s
+ y2.x34.v2.q1
- 2y2.x35.o
- 2y2.x35.v2.s
- y2.x36.q2
- 2y2.x36.q1
+ 2y2.x37.s
+ 2y2.x38.u
- y2.x39.w1
- 2x32.w1.u.p3
- y2.x32.w1.v2.p3
+ 2y2.x33.u.p3
- y2.x34.w1.p3
- o2 =
0
- p1.n =
0
- o.n =
y2.v2.s.o
+ y2.x3.v2.s.q2
- y2.x33.s.q2
+ y2.x33.w1.v2.q2
+ y2.x34.w1.o
+ 2y2.x35.w1.q2
+ y2.x36.w1.s
+ y2.x37.w1.u
+ 2y2.x3.w1.s.p3
- n2 =
0
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.x2.v2 =
- 2y2.w1.w2
- y1.v22 =
0
- w1.v2.s =
x3.w1.q2
- 2x32.w1.s
- x33.w1.u
- y2.v2.q1
+ 2y2.x3.v2.s
- 2y2.x32.q2
- 2y2.x32.q1
- 2y2.x33.s
+ y2.x33.w1.v2
+ 2y2.x34.u
+ 2y2.x35.w1
- w1.v2.o =
- x3.s.q2
- x3.w1.v2.q2
- 2x32.w1.o
- 2x34.w1.s
+ y2.v22.q2
+ 2y2.v22.q1
+ 2y2.x3.v2.o
+ y2.x3.v22.s
- y2.x32.v2.q2
+ 2y2.x32.v2.q1
- y2.x33.o
- 2y2.x33.v2.s
+ 2y2.x34.q2
+ y2.x34.q1
+ y2.x35.w1.v2
- w1.s.q2 =
- y2.s.o
+ y2.x3.w1.v2.q2
+ 2y2.x32.w1.o
+ y2.x33.w1.q2
- 2y2.x34.w1.s
- 2y2.x35.w1.u
- w1.s.o =
y2.v2.s.q2
+ y2.x3.s.o
- 2y2.x32.s.q2
- 2y2.x35.w1.s
- 2y2.x36.w1.u
Essential ideal:
There are 5 minimal generators:
-
y1.x2
-
y2.w2
+ 2y2.w1
-
y1.v2
-
y2.v1
-
w1.w2
Nilradical:
There are 16 minimal generators:
-
y2
-
y1
-
x2
-
x1
-
w2
-
w1
-
v1
-
u
-
t
-
s
-
r
-
q2
-
q1
-
p1
-
o
-
n
This cohomology ring was obtained from a calculation
out to degree 24. The cohomology ring approximation
is stable from degree 24 onwards, and
Carlson's tests detect stability from degree 24
onwards.
This cohomology ring has dimension 3 and depth 1.
Here is a homogeneous system of parameters:
- h1 =
p3
in degree 10
- h2 =
x3
in degree 2
- h3 =
v2
in degree 4
The first
term h1 forms
a regular sequence of maximum length.
The remaining
2 terms h2, h3 are all
annihilated by the class
y2.w2
+ 2y2.w1.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
The ideal of essential classes is
free of rank 6 as a module over the polynomial algebra
on h1.
These free generators are:
- G1 =
y1.x2
in degree 3
- G2 =
y2.w2
+ 2y2.w1
in degree 4
- G3 =
y1.v2
in degree 5
- G4 =
y2.v1
in degree 5
- G5 =
w1.w2
in degree 6
- G6 =
y2.w1.w2
- 2y2.w12
in degree 7
The essential ideal squares to zero.
A basis for R/(h1, h2, h3) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 16.
-
1
in degree 0
-
y2
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
x1
in degree 2
-
w2
in degree 3
-
w1
in degree 3
-
v1
in degree 4
-
y2.w2
in degree 4
-
u
in degree 5
-
t
in degree 6
-
y2.u
in degree 6
-
s
in degree 7
-
y2.t
in degree 7
-
r
in degree 8
-
y2.s
in degree 8
-
q2
in degree 9
-
q1
in degree 9
-
p2
in degree 10
-
p1
in degree 10
-
y2.q2
in degree 10
-
o
in degree 11
-
y2.p1
in degree 11
-
n
in degree 12
-
y2.n
in degree 13
A basis for AnnR/(h1, h2)(h3) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 12.
-
x1
in degree 2
-
w2
+ 2w1
in degree 3
-
v1
in degree 4
-
y2.w2
+ 2y2.w1
in degree 4
-
y2.v1
in degree 5
-
t
in degree 6
-
y2.u
in degree 6
-
y2.t
in degree 7
-
y2.r
in degree 9
A basis for AnnR/(h1)(h2, h3) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 10.
-
y2.w2
+ 2y2.w1
in degree 4
-
y1.v2
- 2y2.v1
in degree 5
-
w1.w2
in degree 6
-
y2.w1.w2
- 2y2.w12
in degree 7
A basis for AnnR/(h1)(h2)
/ h3 AnnR/(h1)(h2) is as follows.
Carlson's Koszul condition stipulates that this must
be confined to degrees less than 14.
-
x1
in degree 2
-
y1.x2
in degree 3
-
y2.w2
+ 2y2.w1
in degree 4
-
y1.v2
- 2y2.v1
in degree 5
Restriction to maximal subgroup number 1, which is V125
- y1 restricts to
0
- y2 restricts to
y1
- x1 restricts to
0
- x2 restricts to
y1.y2
- x3 restricts to
x1
- w1 restricts to
y2.x1
- y1.x2
- w2 restricts to
- 2y2.x1
+ 2y1.x2
- v1 restricts to
2y1.y2.x1
- v2 restricts to
- x22
+ 2x1.x3
- x1.x2
+ 2y2.y3.x1
- 2y1.y3.x2
+ 2y1.y2.x3
- 2y1.y2.x1
- u restricts to
y3.x12
- y2.x1.x2
+ 2y2.x12
+ 2y1.x22
+ 2y1.x1.x3
- y1.x1.x2
- t restricts to
y2.y3.x12
- y1.y3.x1.x2
- 2y1.y3.x12
+ y1.y2.x1.x3
+ 2y1.y2.x1.x2
+ y1.y2.x12
- s restricts to
- y3.x1.x22
+ 2y3.x12.x3
- y3.x12.x2
+ 2y3.x13
+ y2.x23
- 2y2.x1.x2.x3
+ 2y2.x1.x22
- 2y2.x12.x3
- y2.x12.x2
- y1.x22.x3
+ 2y1.x1.x32
- y1.x1.x2.x3
- y1.x1.x22
- y1.x12.x3
+ 2y1.x12.x2
- r restricts to
- y2.y3.x1.x22
+ 2y2.y3.x12.x3
- y2.y3.x12.x2
+ y2.y3.x13
+ y1.y3.x23
- 2y1.y3.x1.x2.x3
+ y1.y3.x1.x22
- y1.y3.x12.x2
+ y1.y3.x13
- y1.y2.x22.x3
+ 2y1.y2.x1.x32
- y1.y2.x1.x2.x3
+ y1.y2.x1.x22
- y1.y2.x12.x3
+ y1.y2.x13
- q1 restricts to
- y3.x14
+ y2.x24
+ y2.x1.x22.x3
+ 2y2.x1.x23
- y2.x12.x32
+ y2.x12.x2.x3
- 2y2.x12.x22
+ y2.x13.x3
- 2y2.x13.x2
+ 2y2.x14
- y1.x23.x3
- 2y1.x24
+ y1.x1.x2.x32
- y1.x1.x22.x3
+ 2y1.x1.x23
- y1.x12.x2.x3
- 2y1.x12.x22
- y1.x13.x3
- 2y1.x13.x2
+ 2y1.y2.y3.x1.x22
+ y1.y2.y3.x12.x3
+ 2y1.y2.y3.x12.x2
+ y1.y2.y3.x13
- q2 restricts to
y3.x24
+ y3.x1.x22.x3
+ 2y3.x1.x23
- y3.x12.x32
+ y3.x12.x2.x3
+ 2y3.x12.x22
- 2y3.x13.x3
+ y3.x13.x2
- y2.x23.x3
- 2y2.x24
+ y2.x1.x2.x32
- y2.x1.x22.x3
- 2y2.x1.x23
+ 2y2.x12.x2.x3
+ 2y2.x12.x22
- y2.x13.x3
+ 2y2.x13.x2
+ y2.x14
- 2y1.x22.x32
- y1.x23.x3
+ y1.x1.x33
- y1.x1.x2.x32
- y1.x1.x22.x3
- y1.x1.x23
- y1.x12.x32
- 2y1.x12.x2.x3
+ 2y1.x13.x3
- y1.y2.y3.x13
- p1 restricts to
y2.y3.x24
+ y2.y3.x1.x22.x3
+ 2y2.y3.x1.x23
- y2.y3.x12.x32
+ y2.y3.x12.x2.x3
+ 2y2.y3.x13.x3
- y2.y3.x13.x2
- 2y2.y3.x14
- y1.y3.x23.x3
+ y1.y3.x1.x2.x32
+ y1.y3.x1.x22.x3
- y1.y3.x1.x23
- 2y1.y3.x12.x32
+ y1.y3.x13.x3
- 2y1.y3.x13.x2
- 2y1.y3.x14
- 2y1.y2.x22.x32
- 2y1.y2.x23.x3
+ y1.y2.x1.x33
- 2y1.y2.x1.x22.x3
- y1.y2.x1.x23
+ y1.y2.x12.x32
- y1.y2.x12.x2.x3
- 2y1.y2.x13.x3
- 2y1.y2.x13.x2
- p2 restricts to
x25
+ x1.x24
+ x12.x22.x3
+ 2x12.x23
- x13.x32
+ x13.x2.x3
+ 2x14.x3
- 2x14.x2
- y2.y3.x24
- y2.y3.x1.x22.x3
- 2y2.y3.x1.x23
+ y2.y3.x12.x32
- y2.y3.x12.x2.x3
- y2.y3.x12.x22
- 2y2.y3.x14
+ y1.y3.x23.x3
- y1.y3.x1.x2.x32
- y1.y3.x1.x22.x3
+ 2y1.y3.x1.x23
+ 2y1.y3.x12.x32
- 2y1.y3.x12.x2.x3
- 2y1.y3.x12.x22
- 2y1.y3.x13.x2
- 2y1.y3.x14
+ 2y1.y2.x22.x32
+ 2y1.y2.x23.x3
- y1.y2.x1.x33
+ y1.y2.x1.x22.x3
- y1.y2.x1.x23
+ y1.y2.x12.x32
- y1.y2.x12.x2.x3
- 2y1.y2.x12.x22
- 2y1.y2.x13.x3
+ y1.y2.x13.x2
- 2y1.y2.x14
- p3 restricts to
- x35
+ x24.x3
+ 2x25
- 2x1.x22.x32
+ 2x1.x23.x3
- 2x12.x33
- 2x12.x2.x32
- x12.x22.x3
+ 2x13.x32
- 2x13.x2.x3
- 2x13.x22
- x14.x3
+ x14.x2
+ y2.y3.x24
+ y2.y3.x1.x22.x3
+ 2y2.y3.x1.x23
- y2.y3.x12.x32
+ y2.y3.x12.x2.x3
+ 2y2.y3.x13.x3
- y2.y3.x13.x2
+ y2.y3.x14
- y1.y3.x23.x3
+ 2y1.y3.x24
+ y1.y3.x1.x2.x32
- 2y1.y3.x1.x22.x3
- 2y1.y3.x1.x23
+ y1.y3.x12.x32
+ 2y1.y3.x12.x2.x3
- 2y1.y3.x12.x22
- y1.y3.x13.x3
+ y1.y3.x13.x2
- 2y1.y3.x14
- 2y1.y2.x22.x32
+ y1.y2.x23.x3
+ y1.y2.x24
+ y1.y2.x1.x33
+ 2y1.y2.x1.x2.x32
+ y1.y2.x1.x22.x3
+ y1.y2.x1.x23
+ y1.y2.x12.x32
+ y1.y2.x12.x2.x3
- y1.y2.x12.x22
+ y1.y2.x13.x3
+ y1.y2.x13.x2
- y1.y2.x14
- o restricts to
y3.x25
- 2y3.x13.x22
- y3.x14.x3
+ 2y3.x14.x2
- y3.x15
- y2.x24.x3
+ 2y2.x1.x22.x32
- 2y2.x1.x23.x3
+ 2y2.x12.x33
+ 2y2.x12.x2.x32
+ y2.x12.x22.x3
+ 2y2.x12.x23
- 2y2.x13.x32
- 2y2.x13.x2.x3
+ y2.x13.x22
- 2y2.x14.x3
- y2.x15
- 2y1.x23.x32
+ 2y1.x24.x3
- 2y1.x1.x2.x33
- 2y1.x1.x22.x32
- y1.x1.x23.x3
+ y1.x1.x24
+ 2y1.x12.x2.x32
+ 2y1.x12.x22.x3
- 2y1.x13.x32
- 2y1.x13.x2.x3
+ 2y1.x13.x22
- 2y1.x14.x3
- y1.y2.y3.x24
- y1.y2.y3.x1.x22.x3
- 2y1.y2.y3.x1.x23
+ y1.y2.y3.x12.x32
- y1.y2.y3.x12.x2.x3
+ y1.y2.y3.x12.x22
+ y1.y2.y3.x13.x3
+ 2y1.y2.y3.x13.x2
+ 2y1.y2.y3.x14
- n restricts to
y2.y3.x25
+ 2y2.y3.x1.x24
+ 2y2.y3.x12.x22.x3
- y2.y3.x12.x23
- 2y2.y3.x13.x32
+ 2y2.y3.x13.x2.x3
- y2.y3.x13.x22
+ y2.y3.x14.x3
+ y2.y3.x14.x2
+ y2.y3.x15
- y1.y3.x24.x3
+ 2y1.y3.x1.x22.x32
+ y1.y3.x1.x23.x3
+ y1.y3.x1.x24
+ 2y1.y3.x12.x33
- y1.y3.x12.x2.x32
- y1.y3.x12.x22.x3
+ y1.y3.x12.x23
- 2y1.y3.x13.x32
+ y1.y3.x13.x2.x3
- y1.y3.x13.x22
- y1.y3.x14.x3
- 2y1.y3.x14.x2
- 2y1.y3.x15
- 2y1.y2.x23.x32
- 2y1.y2.x24.x3
- y1.y2.x25
- 2y1.y2.x1.x2.x33
+ 2y1.y2.x1.x22.x32
+ y1.y2.x1.x23.x3
+ y1.y2.x12.x2.x32
- 2y1.y2.x12.x22.x3
- y1.y2.x12.x23
- y1.y2.x13.x32
+ y1.y2.x13.x2.x3
+ 2y1.y2.x13.x22
+ y1.y2.x14.x3
+ y1.y2.x14.x2
- y1.y2.x15
Restriction to maximal subgroup number 2, which is 125gp4
- y1 restricts to
- y1
- y2 restricts to
0
- x1 restricts to
- y1.y2
- x2 restricts to
- 2y1.y2
- x3 restricts to
0
- w1 restricts to
0
- w2 restricts to
w
- v1 restricts to
- y2.w
- v2 restricts to
- x2
+ y2.w
- u restricts to
- 2u
- t restricts to
2y2.u
- s restricts to
- s
+ y2.x3
- r restricts to
y2.s
- q1 restricts to
- y2.x4
- q2 restricts to
- q
+ 2y2.x4
- p1 restricts to
y2.q
- p2 restricts to
- x5
- y2.q
- p3 restricts to
- 2x5
- p
+ 2y2.q
- o restricts to
x.q
- n restricts to
- y2.x.q
Restriction to maximal subgroup number 3, which is 125gp4
- y1 restricts to
2y1
- y2 restricts to
- 2y1
- x1 restricts to
2y1.y2
- x2 restricts to
y1.y2
- x3 restricts to
2y1.y2
- w1 restricts to
0
- w2 restricts to
- w
- v1 restricts to
y2.w
- v2 restricts to
- x2
- 2y2.w
- u restricts to
u
- t restricts to
- y2.u
- s restricts to
- s
+ y2.x3
- r restricts to
y2.s
- q1 restricts to
- y2.x4
- q2 restricts to
2q
+ 2y2.x4
- p1 restricts to
- 2y2.q
- p2 restricts to
- x5
+ 2y2.q
- p3 restricts to
- 2x5
+ 2p
+ y2.q
- o restricts to
- 2x.q
- n restricts to
2y2.x.q
Restriction to maximal subgroup number 4, which is 125gp4
- y1 restricts to
y1
- y2 restricts to
- 2y1
- x1 restricts to
y1.y2
- x2 restricts to
- y1.y2
- x3 restricts to
2y1.y2
- w1 restricts to
0
- w2 restricts to
w
- v1 restricts to
- y2.w
- v2 restricts to
- x2
- 2y2.w
- u restricts to
2u
- t restricts to
- 2y2.u
- s restricts to
- s
+ y2.x3
- r restricts to
y2.s
- q1 restricts to
- y2.x4
- q2 restricts to
q
+ 2y2.x4
- p1 restricts to
- y2.q
- p2 restricts to
- x5
+ y2.q
- p3 restricts to
- 2x5
+ p
- 2y2.q
- o restricts to
- x.q
- n restricts to
y2.x.q
Restriction to maximal subgroup number 5, which is 125gp4
- y1 restricts to
- 2y1
- y2 restricts to
- 2y1
- x1 restricts to
- 2y1.y2
- x2 restricts to
- 2y1.y2
- x3 restricts to
2y1.y2
- w1 restricts to
0
- w2 restricts to
- w
- v1 restricts to
y2.w
- v2 restricts to
- x2
- u restricts to
- u
- t restricts to
y2.u
- s restricts to
- s
+ y2.x3
- r restricts to
y2.s
- q1 restricts to
- y2.x4
- q2 restricts to
- 2q
+ 2y2.x4
- p1 restricts to
2y2.q
- p2 restricts to
- x5
- 2y2.q
- p3 restricts to
- 2x5
- 2p
- y2.q
- o restricts to
2x.q
- n restricts to
- 2y2.x.q
Restriction to maximal subgroup number 6, which is 125gp4
- y1 restricts to
- 2y1
- y2 restricts to
y1
- x1 restricts to
- 2y1.y2
- x2 restricts to
0
- x3 restricts to
- y1.y2
- w1 restricts to
0
- w2 restricts to
- w
- v1 restricts to
y2.w
- v2 restricts to
- x2
+ y2.w
- u restricts to
- u
- t restricts to
y2.u
- s restricts to
- s
+ y2.x3
- r restricts to
y2.s
- q1 restricts to
- y2.x4
- q2 restricts to
- 2q
+ 2y2.x4
- p1 restricts to
2y2.q
- p2 restricts to
- x5
- 2y2.q
- p3 restricts to
- 2x5
- 2p
- y2.q
- o restricts to
2x.q
- n restricts to
- 2y2.x.q
Restriction to maximal elementary abelian number 1, which is V125
- y1 restricts to
0
- y2 restricts to
y3
- x1 restricts to
0
- x2 restricts to
y2.y3
+ y1.y3
- x3 restricts to
x3
- w1 restricts to
y3.x2
+ y3.x1
- y2.x3
- y1.x3
- w2 restricts to
- 2y3.x2
- 2y3.x1
+ 2y2.x3
+ 2y1.x3
- v1 restricts to
2y2.y3.x3
+ 2y1.y3.x3
- v2 restricts to
2x2.x3
- x22
- x1.x3
- 2x1.x2
- x12
- 2y2.y3.x3
+ 2y2.y3.x1
- 2y1.y3.x3
- 2y1.y3.x2
+ 2y1.y2.x3
- u restricts to
2y3.x2.x3
+ 2y3.x22
- y3.x1.x3
- y3.x1.x2
+ 2y3.x12
+ y2.x32
- y2.x2.x3
- y2.x1.x3
+ 2y1.x32
- y1.x2.x3
- y1.x1.x3
- t restricts to
2y2.y3.x32
- 2y2.y3.x2.x3
- y2.y3.x1.x3
- y1.y3.x32
+ 2y1.y3.x2.x3
- 2y1.y3.x1.x3
+ y1.y2.x32
- s restricts to
2y3.x23
- y3.x1.x32
- 2y3.x1.x2.x3
- y3.x12.x2
+ y3.x13
+ y2.x33
+ y2.x2.x32
- y2.x22.x3
+ y2.x23
- y2.x1.x32
+ y2.x1.x2.x3
- 2y2.x1.x22
+ 2y2.x12.x3
- 2y2.x12.x2
+ y2.x13
- 2y1.x33
- 2y1.x2.x32
- 2y1.x22.x3
+ y1.x23
- 2y1.x1.x32
- y1.x1.x2.x3
- 2y1.x1.x22
+ y1.x12.x3
- 2y1.x12.x2
+ y1.x13
- r restricts to
- 2y2.y3.x33
- y2.y3.x2.x32
+ y2.y3.x22.x3
- 2y2.y3.x1.x32
- y2.y3.x1.x2.x3
- y2.y3.x1.x22
- 2y2.y3.x12.x2
- y2.y3.x13
+ 2y1.y3.x33
- 2y1.y3.x2.x32
- y1.y3.x22.x3
+ y1.y3.x23
+ 2y1.y3.x1.x32
- 2y1.y3.x1.x2.x3
+ 2y1.y3.x1.x22
+ y1.y3.x12.x3
+ y1.y3.x12.x2
+ y1.y2.x33
+ 2y1.y2.x2.x32
- y1.y2.x22.x3
- y1.y2.x1.x32
- 2y1.y2.x1.x2.x3
- y1.y2.x12.x3
- q1 restricts to
- y3.x2.x33
+ y3.x22.x32
+ y3.x23.x3
+ y3.x24
- 2y3.x1.x33
- 2y3.x1.x2.x32
+ y3.x1.x22.x3
+ 2y3.x12.x32
- 2y3.x12.x2.x3
- y3.x12.x22
- 2y3.x13.x3
+ 2y3.x13.x2
+ 2y3.x14
- y2.x22.x32
- y2.x23.x3
- y2.x24
- y2.x1.x33
+ y2.x1.x22.x3
+ y2.x1.x23
+ 2y2.x12.x32
- y2.x12.x22
- 2y2.x13.x3
+ y2.x13.x2
- y2.x14
- y1.x34
- y1.x22.x32
- y1.x23.x3
- y1.x24
- y1.x1.x33
+ y1.x1.x22.x3
+ y1.x1.x23
+ 2y1.x12.x32
- y1.x12.x22
- 2y1.x13.x3
+ y1.x13.x2
- y1.x14
+ y1.y2.y3.x33
+ y1.y2.y3.x2.x32
+ 2y1.y2.y3.x22.x3
+ 2y1.y2.y3.x1.x32
- y1.y2.y3.x1.x2.x3
+ 2y1.y2.y3.x12.x3
- q2 restricts to
y3.x2.x33
+ 2y3.x22.x32
- y3.x23.x3
- 2y3.x1.x33
- y3.x1.x22.x3
- y3.x1.x23
+ 2y3.x12.x32
+ y3.x12.x2.x3
+ 2y3.x13.x3
- 2y3.x13.x2
+ 2y3.x14
- y2.x34
- y2.x2.x33
- y2.x22.x32
- 2y2.x23.x3
+ 2y2.x24
- y2.x1.x33
- y2.x1.x2.x32
- y2.x1.x22.x3
+ 2y2.x1.x23
+ 2y2.x12.x32
- y2.x12.x22
- y2.x13.x3
+ y2.x14
- y1.x34
+ 2y1.x2.x33
- y1.x22.x32
- y1.x23.x3
- 2y1.x24
+ 2y1.x1.x2.x32
- 2y1.x1.x22.x3
+ y1.x1.x23
- y1.x12.x32
+ y1.x13.x3
- y1.x13.x2
+ 2y1.x14
- y1.y2.y3.x33
- p1 restricts to
y2.y3.x34
+ y2.y3.x2.x33
+ y2.y3.x22.x32
+ 2y2.y3.x23.x3
- y2.y3.x24
+ y2.y3.x1.x33
+ y2.y3.x1.x22.x3
- 2y2.y3.x1.x23
+ y2.y3.x12.x32
- 2y2.y3.x12.x2.x3
- 2y2.y3.x12.x22
- 2y2.y3.x13.x2
- y2.y3.x14
- 2y1.y3.x34
+ y1.y3.x2.x33
- y1.y3.x22.x32
+ 2y1.y3.x23.x3
+ y1.y3.x24
- 2y1.y3.x1.x2.x32
+ y1.y3.x1.x22.x3
- 2y1.y3.x12.x32
- y1.y3.x12.x2.x3
+ 2y1.y3.x12.x22
+ y1.y3.x13.x3
- 2y1.y3.x13.x2
- 2y1.y2.x34
+ 2y1.y2.x2.x33
- 2y1.y2.x22.x32
+ y1.y2.x23.x3
+ y1.y2.x24
- y1.y2.x1.x33
- y1.y2.x1.x2.x32
- y1.y2.x1.x22.x3
- y1.y2.x1.x23
+ y1.y2.x12.x22
+ 2y1.y2.x13.x3
- y1.y2.x13.x2
+ y1.y2.x14
- p2 restricts to
- 2x2.x34
- 2x22.x33
+ x23.x32
+ x24.x3
- x25
- x1.x2.x33
- x1.x22.x32
- x1.x23.x3
+ x12.x22.x3
+ 2x13.x32
- x13.x2.x3
+ x14.x3
- x15
- y2.y3.x34
+ 2y2.y3.x2.x33
- y2.y3.x22.x32
+ y2.y3.x24
- 2y2.y3.x1.x2.x32
- y2.y3.x1.x22.x3
+ 2y2.y3.x1.x23
- y2.y3.x12.x32
+ y2.y3.x12.x2.x3
+ 2y2.y3.x12.x22
+ y2.y3.x13.x3
+ 2y2.y3.x13.x2
+ y2.y3.x14
+ y1.y3.x34
+ 2y1.y3.x22.x32
+ y1.y3.x23.x3
- y1.y3.x24
- 2y1.y3.x1.x33
+ 2y1.y3.x1.x22.x3
+ y1.y3.x12.x32
- 2y1.y3.x12.x2.x3
- 2y1.y3.x12.x22
+ y1.y3.x13.x3
+ 2y1.y3.x13.x2
- 2y1.y2.x34
+ y1.y2.x22.x32
- y1.y2.x23.x3
- y1.y2.x24
- y1.y2.x1.x2.x32
+ y1.y2.x1.x22.x3
+ y1.y2.x1.x23
- y1.y2.x12.x32
- y1.y2.x12.x22
- 2y1.y2.x13.x3
+ y1.y2.x13.x2
- y1.y2.x14
- p3 restricts to
x2.x34
+ 2x22.x33
+ x23.x32
+ x24.x3
- 2x25
- 2x1.x2.x33
+ x1.x24
- 2x12.x33
+ x12.x2.x32
+ 2x12.x22.x3
- x12.x23
- 2x13.x2.x3
+ x13.x22
- x14.x2
- 2x15
- y2.y3.x2.x33
+ 2y2.y3.x22.x32
- 2y2.y3.x1.x33
+ 2y2.y3.x1.x2.x32
- y2.y3.x1.x23
- 2y2.y3.x12.x32
+ y2.y3.x13.x3
- 2y2.y3.x13.x2
+ 2y2.y3.x14
+ 2y1.y3.x34
- 2y1.y3.x2.x33
+ y1.y3.x22.x32
- 2y1.y3.x23.x3
- 2y1.y3.x1.x33
+ y1.y3.x1.x2.x32
+ 2y1.y3.x1.x22.x3
- 2y1.y3.x1.x23
+ 2y1.y3.x12.x32
+ y1.y3.x12.x2.x3
+ 2y1.y3.x12.x22
- 2y1.y3.x13.x3
+ y1.y3.x14
+ y1.y2.x34
+ 2y1.y2.x2.x33
- 2y1.y2.x22.x32
+ y1.y2.x23.x3
+ y1.y2.x24
- y1.y2.x1.x33
- y1.y2.x1.x2.x32
- y1.y2.x1.x22.x3
- y1.y2.x1.x23
+ y1.y2.x12.x22
+ 2y1.y2.x13.x3
- y1.y2.x13.x2
+ y1.y2.x14
- o restricts to
- y3.x2.x34
- 2y3.x23.x32
- y3.x25
+ 2y3.x1.x34
- y3.x1.x22.x32
- 2y3.x1.x23.x3
- y3.x1.x24
- 2y3.x12.x33
+ 2y3.x12.x2.x32
- 2y3.x12.x23
+ y3.x13.x32
- 2y3.x13.x2.x3
+ y3.x14.x3
+ 2y3.x14.x2
- 2y2.x35
+ y2.x2.x34
- 2y2.x23.x32
+ y2.x24.x3
+ y2.x1.x22.x32
+ y2.x1.x24
+ 2y2.x12.x33
+ 2y2.x12.x2.x32
+ 2y2.x12.x22.x3
- y2.x12.x23
+ 2y2.x13.x32
- 2y2.x13.x2.x3
+ y2.x13.x22
- y2.x14.x2
+ y2.x15
+ 2y1.x35
+ y1.x2.x34
- 2y1.x22.x33
- 2y1.x23.x32
+ y1.x24.x3
- y1.x25
- y1.x1.x34
+ y1.x1.x2.x33
+ y1.x1.x22.x32
+ y1.x1.x24
+ 2y1.x12.x2.x32
+ 2y1.x12.x22.x3
- y1.x12.x23
+ 2y1.x13.x32
- 2y1.x13.x2.x3
+ y1.x13.x22
- y1.x14.x2
+ 2y1.y2.y3.x34
+ y1.y2.y3.x2.x33
- 2y1.y2.y3.x22.x32
- y1.y2.y3.x23.x3
- y1.y2.y3.x24
+ 2y1.y2.y3.x1.x33
- 2y1.y2.y3.x1.x2.x32
+ y1.y2.y3.x1.x22.x3
+ y1.y2.y3.x1.x23
+ y1.y2.y3.x12.x32
- y1.y2.y3.x12.x22
- 2y1.y2.y3.x13.x3
+ y1.y2.y3.x13.x2
- y1.y2.y3.x14
- n restricts to
y2.y3.x22.x33
- y2.y3.x23.x32
+ y2.y3.x24.x3
+ 2y2.y3.x25
- y2.y3.x1.x34
- y2.y3.x1.x2.x33
+ 2y2.y3.x1.x22.x32
+ y2.y3.x1.x23.x3
- 2y2.y3.x1.x24
- 2y2.y3.x12.x33
- y2.y3.x12.x2.x32
+ y2.y3.x12.x22.x3
- y2.y3.x12.x23
- y2.y3.x13.x22
- y2.y3.x14.x3
- 2y2.y3.x14.x2
+ 2y2.y3.x15
+ 2y1.y3.x35
+ y1.y3.x2.x34
- 2y1.y3.x22.x33
+ y1.y3.x1.x34
+ y1.y3.x1.x2.x33
+ y1.y3.x1.x22.x32
+ y1.y3.x1.x23.x3
- y1.y3.x1.x24
- 2y1.y3.x12.x23
+ y1.y3.x13.x32
- y1.y3.x13.x2.x3
+ 2y1.y3.x14.x2
+ y1.y3.x15
+ y1.y2.x35
+ 2y1.y2.x2.x34
+ 2y1.y2.x23.x32
+ 2y1.y2.x24.x3
- y1.y2.x25
- 2y1.y2.x1.x34
+ y1.y2.x1.x2.x33
- 2y1.y2.x1.x22.x32
- 2y1.y2.x1.x23.x3
- y1.y2.x12.x33
+ 2y1.y2.x12.x22.x3
- y1.y2.x13.x32
- 2y1.y2.x13.x2.x3
+ 2y1.y2.x14.x3
- y1.y2.x15
Restriction to the greatest central elementary abelian, which is C5
- y1 restricts to
0
- y2 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- x3 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u restricts to
0
- t restricts to
0
- s restricts to
0
- r restricts to
0
- q1 restricts to
0
- q2 restricts to
0
- p1 restricts to
0
- p2 restricts to
0
- p3 restricts to
- x5
- o restricts to
0
- n restricts to
0
(1 + 2t + 2t2
+ 2t3 + t4 + t9
+ 2t10 + 2t11 + 2t12
+ t13) /
(1 - t2) (1 - t4) (1 - t10)
Back to the groups of order 625