Small group number 1620 of order 128
G is the group 128gp1620
G has 4 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 6 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
4, 4, 4, 4, 4, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 10 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- y4 in degree 1
- x1 in degree 2
- x2 in degree 2
- u1 in degree 5
- u2 in degree 5
- t in degree 6
- r in degree 8, a regular element
There are 19 minimal relations:
- y1.y4 =
0
- y12 =
0
- y2.y3.y4 =
y2.y32
+ y22.y3
+ y1.x1
- y1.x2 =
0
- x22 =
y42.x2
+ y2.y33
+ y23.y3
+ y1.y3.x1
+ y1.y2.x1
- y1.x12 =
y1.y32.x1
+ y1.y2.y3.x1
+ y1.y22.x1
- x12.x2 =
y4.u2
+ y32.x1.x2
+ y2.y3.x1.x2
+ y22.x1.x2
- y1.u2 =
0
- y1.u1 =
0
- x2.u2 =
y42.u2
+ y2.y32.x12
+ y2.y34.x1
+ y22.y3.x12
+ y24.y3.x1
- x2.u1 =
y4.t
+ y4.x13
+ y42.u2
+ y3.y42.x1.x2
+ y3.y42.x12
+ y32.y4.x12
+ y22.y4.x12
+ y23.y32.x1
+ y24.y3.x1
+ y1.y24.x1
- y1.t =
0
- x2.t =
y4.x1.u2
+ y42.t
+ y42.x13
+ y3.y42.u2
+ y3.y43.x12
+ y32.y42.x12
+ y33.y4.x1.x2
+ y2.y32.u2
+ y2.y32.u1
+ y2.y33.x12
+ y22.y42.x12
+ y22.y3.u2
+ y22.y3.u1
+ y22.y32.x1.x2
+ y23.y3.x1.x2
+ y23.y3.x12
+ y1.y35.x1
+ y1.y25.x1
- u22 =
y4.x12.u2
+ y32.y4.x1.u2
+ y2.y3.x14
+ y2.y32.x1.u2
+ y2.y35.x12
+ y22.y4.x1.u2
+ y22.y3.x1.u2
+ y23.y33.x12
+ y25.y3.x12
- u1.u2 =
x12.t
+ x15
+ y4.x12.u2
+ y3.y4.x14
+ y3.y42.x1.u2
+ y32.x1.t
+ y32.y4.x1.u2
+ y33.y4.x13
+ y34.x13
+ y2.y3.x1.t
+ y2.y3.x14
+ y2.y32.x1.u2
+ y22.x1.t
+ y22.y4.x1.u2
+ y22.y3.x1.u2
+ y23.y3.x13
+ y23.y33.x12
+ y24.x13
+ y24.y32.x12
+ y25.y3.x12
+ y1.y37.x1
+ y1.y27.x1
- u12 =
x15
+ y4.x12.u1
+ y42.x14
+ y43.x1.u2
+ y43.x1.u1
+ y44.t
+ y44.x13
+ y45.u2
+ y45.u1
+ y3.y42.x1.u2
+ y3.y45.x1.x2
+ y3.y45.x12
+ y32.y4.x1.u1
+ y32.y42.x13
+ y33.y42.u2
+ y33.y43.x12
+ y34.x13
+ y34.y42.x12
+ y2.y43.t
+ y2.y43.x13
+ y2.y44.u1
+ y2.y45.x12
+ y2.y3.x14
+ y2.y32.x1.u1
+ y2.y33.t
+ y2.y34.u2
+ y2.y34.u1
+ y2.y37.x2
+ y22.y4.x1.u1
+ y22.y44.x1.x2
+ y22.y44.x12
+ y22.y3.x1.u1
+ y22.y32.x13
+ y22.y34.x12
+ y23.y42.u1
+ y23.y43.x1.x2
+ y23.y3.t
+ y23.y32.u2
+ y23.y32.u1
+ y24.x13
+ y24.y42.x12
+ y24.y32.x12
+ y24.y36
+ y25.y3.x12
+ y25.y33.x2
+ y25.y35
+ y26.y34
+ y29.y3
+ y1.y37.x1
+ y1.y27.x1
+ y42.r
- u2.t =
x13.u2
+ y4.x12.t
+ y4.x15
+ y3.y4.x12.u2
+ y3.y42.x14
+ y32.x12.u2
+ y32.y4.x1.t
+ y33.y42.x13
+ y34.y4.x13
+ y2.y3.x12.u1
+ y2.y32.x1.t
+ y2.y33.x1.u1
+ y2.y34.x13
+ y22.x12.u2
+ y22.y4.x1.t
+ y22.y3.x1.t
+ y22.y32.x1.u1
+ y23.y3.x1.u2
+ y23.y3.x1.u1
+ y24.y4.x13
+ y24.y3.x13
+ y1.y38.x1
+ y1.y27.y3.x1
+ y1.y28.x1
- u1.t =
x13.u2
+ x13.u1
+ y42.x12.u2
+ y43.x1.t
+ y43.x14
+ y3.y4.x12.u1
+ y3.y42.x1.t
+ y3.y42.x14
+ y3.y44.x13
+ y3.y45.u2
+ y32.x12.u2
+ y32.x12.u1
+ y33.y42.x13
+ y33.y44.x1.x2
+ y34.y42.u2
+ y35.y42.x1.x2
+ y36.y4.x1.x2
+ y2.y33.x1.u2
+ y2.y35.u2
+ y2.y35.u1
+ y2.y36.x1.x2
+ y2.y36.x12
+ y2.y38.x2
+ y2.y38.x1
+ y22.x12.u2
+ y22.x12.u1
+ y22.y42.x1.u2
+ y22.y43.x13
+ y22.y45.x1.x2
+ y22.y32.x1.u2
+ y22.y33.t
+ y22.y33.x13
+ y22.y35.x1.x2
+ y22.y37.x2
+ y22.y39
+ y23.y42.t
+ y23.y42.x13
+ y23.y3.x1.u2
+ y23.y3.x1.u1
+ y23.y33.u1
+ y23.y34.x1.x2
+ y23.y38
+ y24.y3.t
+ y24.y3.x13
+ y24.y33.x12
+ y24.y35.x2
+ y24.y35.x1
+ y25.y42.x1.x2
+ y25.y42.x12
+ y25.y3.u2
+ y25.y32.x1.x2
+ y25.y32.x12
+ y25.y34.x2
+ y26.y3.x12
+ y26.y33.x1
+ y26.y35
+ y27.y32.x2
+ y27.y32.x1
+ y27.y34
+ y28.y3.x2
+ y4.x2.r
- t2 =
x16
+ y4.x13.u2
+ y42.x12.t
+ y42.x15
+ y43.x12.u2
+ y44.x1.t
+ y44.x14
+ y3.y43.x14
+ y3.y45.x13
+ y3.y46.u2
+ y32.y4.x12.u2
+ y32.y42.x1.t
+ y32.y42.x14
+ y32.y44.x13
+ y33.y43.x13
+ y33.y45.x1.x2
+ y34.x14
+ y34.y42.x13
+ y34.y43.u2
+ y35.y43.x1.x2
+ y36.y42.x1.x2
+ y2.y3.x15
+ y2.y32.x12.u1
+ y2.y33.x1.t
+ y2.y33.x14
+ y2.y34.x1.u2
+ y2.y35.t
+ y2.y35.x13
+ y2.y36.u2
+ y2.y39.x2
+ y2.y39.x1
+ y22.y4.x12.u2
+ y22.y42.x1.t
+ y22.y43.x1.u2
+ y22.y44.x13
+ y22.y46.x1.x2
+ y22.y3.x12.u1
+ y22.y32.x14
+ y22.y33.x1.u2
+ y22.y33.x1.u1
+ y22.y34.t
+ y22.y34.x13
+ y22.y35.u2
+ y22.y36.x1.x2
+ y22.y38.x2
+ y22.y38.x1
+ y22.y310
+ y23.y43.t
+ y23.y43.x13
+ y23.y3.x1.t
+ y23.y3.x14
+ y23.y32.x1.u1
+ y23.y34.u2
+ y23.y34.u1
+ y23.y35.x1.x2
+ y23.y35.x12
+ y23.y37.x2
+ y24.x14
+ y24.y42.x13
+ y24.y32.t
+ y24.y32.x13
+ y24.y33.u2
+ y24.y33.u1
+ y24.y36.x2
+ y24.y36.x1
+ y24.y38
+ y25.y43.x1.x2
+ y25.y43.x12
+ y25.y3.t
+ y25.y32.u1
+ y25.y33.x1.x2
+ y25.y33.x12
+ y25.y35.x1
+ y25.y37
+ y26.y3.u1
+ y26.y32.x1.x2
+ y26.y34.x1
+ y27.y33.x2
+ y27.y35
+ y28.y32.x1
+ y28.y34
+ y29.y3.x2
+ y210.y32
+ y42.x2.r
+ y2.y33.r
+ y23.y3.r
+ y1.y3.x1.r
+ y1.y2.x1.r
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relation:
This cohomology ring was obtained from a calculation
out to degree 17. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
x12
+ y44
+ y3.y4.x1
+ y32.x1
+ y32.y42
+ y34
+ y2.y4.x1
+ y2.y3.x1
+ y22.x1
+ y22.y42
+ y22.y32
+ y24
in degree 4
- h3 =
y42.x12
+ y3.y4.x12
+ y3.y43.x1
+ y32.x12
+ y32.y44
+ y34.x1
+ y34.y42
+ y2.y4.x12
+ y2.y43.x1
+ y2.y3.x12
+ y2.y33.x1
+ y22.x12
+ y22.y44
+ y22.y32.x1
+ y22.y34
+ y23.y3.x1
+ y24.x1
+ y24.y42
+ y24.y32
in degree 6
- h4 =
y4
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 8, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y2
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
x1
in degree 2
-
y32
in degree 2
-
y2.y3
in degree 2
-
y22
in degree 2
-
y1.y3
in degree 2
-
y1.y2
in degree 2
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
y33
in degree 3
-
y2.x2
in degree 3
-
y2.x1
in degree 3
-
y22.y3
in degree 3
-
y23
in degree 3
-
y1.x1
in degree 3
-
y1.y32
in degree 3
-
y1.y2.y3
in degree 3
-
y1.y22
in degree 3
-
x1.x2
in degree 4
-
y32.x2
in degree 4
-
y32.x1
in degree 4
-
y34
in degree 4
-
y2.y3.x2
in degree 4
-
y2.y3.x1
in degree 4
-
y22.x2
in degree 4
-
y22.x1
in degree 4
-
y23.y3
in degree 4
-
y24
in degree 4
-
y1.y3.x1
in degree 4
-
y1.y33
in degree 4
-
y1.y2.x1
in degree 4
-
y1.y22.y3
in degree 4
-
y1.y23
in degree 4
-
u2
in degree 5
-
u1
in degree 5
-
y3.x1.x2
in degree 5
-
y33.x2
in degree 5
-
y33.x1
in degree 5
-
y35
in degree 5
-
y2.x1.x2
in degree 5
-
y22.y3.x2
in degree 5
-
y22.y3.x1
in degree 5
-
y23.x2
in degree 5
-
y23.x1
in degree 5
-
y24.y3
in degree 5
-
y25
in degree 5
-
y1.y32.x1
in degree 5
-
y1.y2.y3.x1
in degree 5
-
y1.y22.x1
in degree 5
-
y1.y23.y3
in degree 5
-
y1.y24
in degree 5
-
t
in degree 6
-
y3.u2
in degree 6
-
y3.u1
in degree 6
-
y32.x1.x2
in degree 6
-
y34.x1
in degree 6
-
y2.u2
in degree 6
-
y2.u1
in degree 6
-
y2.y3.x1.x2
in degree 6
-
y22.x1.x2
in degree 6
-
y23.y3.x2
in degree 6
-
y23.y3.x1
in degree 6
-
y24.x2
in degree 6
-
y24.x1
in degree 6
-
y25.y3
in degree 6
-
y26
in degree 6
-
y1.y33.x1
in degree 6
-
y1.y22.y3.x1
in degree 6
-
y1.y23.x1
in degree 6
-
y1.y24.y3
in degree 6
-
x1.u2
in degree 7
-
x1.u1
in degree 7
-
y3.t
in degree 7
-
y32.u2
in degree 7
-
y32.u1
in degree 7
-
y33.x1.x2
in degree 7
-
y35.x1
in degree 7
-
y2.t
in degree 7
-
y2.y3.u2
in degree 7
-
y2.y3.u1
in degree 7
-
y22.u2
in degree 7
-
y22.u1
in degree 7
-
y22.y3.x1.x2
in degree 7
-
y23.x1.x2
in degree 7
-
y24.y3.x2
in degree 7
-
y24.y3.x1
in degree 7
-
y25.x1
in degree 7
-
y26.y3
in degree 7
-
y1.y23.y3.x1
in degree 7
-
y1.y24.x1
in degree 7
-
x1.t
in degree 8
-
y3.x1.u2
in degree 8
-
y3.x1.u1
in degree 8
-
y32.t
in degree 8
-
y33.u2
in degree 8
-
y33.u1
in degree 8
-
y2.x1.u2
in degree 8
-
y2.x1.u1
in degree 8
-
y2.y3.t
in degree 8
-
y22.t
in degree 8
-
y22.y3.u2
in degree 8
-
y22.y3.u1
in degree 8
-
y23.u2
in degree 8
-
y23.u1
in degree 8
-
y23.y3.x1.x2
in degree 8
-
y24.x1.x2
in degree 8
-
y25.y3.x1
in degree 8
-
y26.x1
in degree 8
-
y1.y24.y3.x1
in degree 8
-
y3.x1.t
in degree 9
-
y32.x1.u2
in degree 9
-
y32.x1.u1
in degree 9
-
y33.t
in degree 9
-
y34.u2
in degree 9
-
y34.u1
in degree 9
-
y2.x1.t
in degree 9
-
y2.y3.x1.u2
in degree 9
-
y2.y3.x1.u1
in degree 9
-
y22.x1.u2
in degree 9
-
y22.x1.u1
in degree 9
-
y22.y3.t
in degree 9
-
y23.t
in degree 9
-
y23.y3.u2
in degree 9
-
y23.y3.u1
in degree 9
-
y24.u2
in degree 9
-
y24.u1
in degree 9
-
y24.y3.x1.x2
in degree 9
-
y26.y3.x1
in degree 9
-
y32.x1.t
in degree 10
-
y33.x1.u2
in degree 10
-
y33.x1.u1
in degree 10
-
y34.t
in degree 10
-
y35.u2
in degree 10
-
y35.u1
in degree 10
-
y2.y3.x1.t
in degree 10
-
y22.x1.t
in degree 10
-
y22.y3.x1.u2
in degree 10
-
y22.y3.x1.u1
in degree 10
-
y23.x1.u2
in degree 10
-
y23.x1.u1
in degree 10
-
y23.y3.t
in degree 10
-
y24.t
in degree 10
-
y24.y3.u2
in degree 10
-
y24.y3.u1
in degree 10
-
y25.u2
in degree 10
-
y25.u1
in degree 10
-
y33.x1.t
in degree 11
-
y34.x1.u2
in degree 11
-
y34.x1.u1
in degree 11
-
y35.t
in degree 11
-
y22.y3.x1.t
in degree 11
-
y23.x1.t
in degree 11
-
y23.y3.x1.u2
in degree 11
-
y23.y3.x1.u1
in degree 11
-
y24.x1.u2
in degree 11
-
y24.x1.u1
in degree 11
-
y24.y3.t
in degree 11
-
y25.t
in degree 11
-
y25.y3.u2
in degree 11
-
y25.y3.u1
in degree 11
-
y26.u2
in degree 11
-
y26.u1
in degree 11
-
y34.x1.t
in degree 12
-
y35.x1.u2
in degree 12
-
y35.x1.u1
in degree 12
-
y23.y3.x1.t
in degree 12
-
y24.x1.t
in degree 12
-
y24.y3.x1.u2
in degree 12
-
y24.y3.x1.u1
in degree 12
-
y25.x1.u2
in degree 12
-
y25.x1.u1
in degree 12
-
y25.y3.t
in degree 12
-
y26.t
in degree 12
-
y26.y3.u2
in degree 12
-
y26.y3.u1
in degree 12
-
y35.x1.t
in degree 13
-
y24.y3.x1.t
in degree 13
-
y25.x1.t
in degree 13
-
y25.y3.x1.u2
in degree 13
-
y25.y3.x1.u1
in degree 13
-
y26.x1.u2
in degree 13
-
y26.x1.u1
in degree 13
-
y26.y3.t
in degree 13
-
y25.y3.x1.t
in degree 14
-
y26.x1.t
in degree 14
-
y26.y3.x1.u2
in degree 14
-
y26.y3.x1.u1
in degree 14
-
y26.y3.x1.t
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y1
in degree 1
-
y1.y3
in degree 2
-
y1.y2
in degree 2
-
y1.x1
in degree 3
-
y1.y32
in degree 3
-
y1.y2.y3
in degree 3
-
y1.y22
in degree 3
-
y1.y3.x1
in degree 4
-
y1.y33
in degree 4
-
y1.y2.x1
in degree 4
-
y1.y22.y3
in degree 4
-
y1.y23
in degree 4
-
y1.y32.x1
in degree 5
-
y1.y2.y3.x1
in degree 5
-
y1.y22.x1
in degree 5
-
y1.y23.y3
in degree 5
-
y1.y24
in degree 5
-
y1.y33.x1
in degree 6
-
y1.y22.y3.x1
in degree 6
-
y1.y23.x1
in degree 6
-
y1.y24.y3
in degree 6
-
y32.u2
+ y33.x1.x2
+ y2.y3.u2
+ y22.u2
+ y23.x1.x2
+ y3.u2.h
+ y32.x1.x2.h
+ y2.u2.h
+ y22.x1.x2.h
+ x2.h5
in degree 7
-
y1.y23.y3.x1
in degree 7
-
y1.y24.x1
in degree 7
-
y33.u2
+ y34.x1.x2
+ y2.y32.u2
+ y22.y3.u2
+ y23.y3.x1.x2
+ y32.u2.h
+ y33.x1.x2.h
+ y2.y3.u2.h
+ y22.y3.x1.x2.h
+ y3.x2.h5
in degree 8
-
y23.u2
+ y23.y3.x1.x2
+ y24.x1.x2
+ y22.u2.h
+ y22.y3.x1.x2.h
+ y23.x1.x2.h
+ y2.x2.h5
in degree 8
-
y1.y24.y3.x1
in degree 8
-
y32.x1.u2
+ y33.x12.x2
+ y2.y3.x1.u2
+ y22.x1.u2
+ y23.x12.x2
+ y3.x1.u2.h
+ y32.x12.x2.h
+ y2.x1.u2.h
+ y22.x12.x2.h
+ x1.x2.h5
in degree 9
-
y34.u2
+ y35.x1.x2
+ y2.y33.u2
+ y22.y32.u2
+ y23.y32.x1.x2
+ y33.u2.h
+ y34.x1.x2.h
+ y2.y32.u2.h
+ y22.y32.x1.x2.h
+ y32.x2.h5
in degree 9
-
y23.y3.u2
+ y23.y32.x1.x2
+ y24.y3.x1.x2
+ y22.y3.u2.h
+ y22.y32.x1.x2.h
+ y23.y3.x1.x2.h
+ y2.y3.x2.h5
in degree 9
-
y24.u2
+ y24.y3.x1.x2
+ y25.x1.x2
+ y23.u2.h
+ y23.y3.x1.x2.h
+ y24.x1.x2.h
+ y22.x2.h5
in degree 9
-
y33.x1.u2
+ y34.x12.x2
+ y2.y32.x1.u2
+ y22.y3.x1.u2
+ y23.y3.x12.x2
+ y32.x1.u2.h
+ y33.x12.x2.h
+ y2.y3.x1.u2.h
+ y22.y3.x12.x2.h
+ y3.x1.x2.h5
in degree 10
-
y35.u2
+ y36.x1.x2
+ y2.y34.u2
+ y22.y33.u2
+ y23.y33.x1.x2
+ y34.u2.h
+ y35.x1.x2.h
+ y2.y33.u2.h
+ y22.y33.x1.x2.h
+ y33.x2.h5
in degree 10
-
y23.x1.u2
+ y23.y3.x12.x2
+ y24.x12.x2
+ y22.x1.u2.h
+ y22.y3.x12.x2.h
+ y23.x12.x2.h
+ y2.x1.x2.h5
in degree 10
-
y24.y3.u2
+ y24.y32.x1.x2
+ y25.y3.x1.x2
+ y23.y3.u2.h
+ y23.y32.x1.x2.h
+ y24.y3.x1.x2.h
+ y22.y3.x2.h5
in degree 10
-
y25.u2
+ y25.y3.x1.x2
+ y26.x1.x2
+ y24.u2.h
+ y24.y3.x1.x2.h
+ y25.x1.x2.h
+ y23.x2.h5
in degree 10
-
y34.x1.u2
+ y35.x12.x2
+ y2.y33.x1.u2
+ y22.y32.x1.u2
+ y23.y32.x12.x2
+ y33.x1.u2.h
+ y34.x12.x2.h
+ y2.y32.x1.u2.h
+ y22.y32.x12.x2.h
+ y32.x1.x2.h5
in degree 11
-
y23.y3.x1.u2
+ y23.y32.x12.x2
+ y24.y3.x12.x2
+ y22.y3.x1.u2.h
+ y22.y32.x12.x2.h
+ y23.y3.x12.x2.h
+ y2.y3.x1.x2.h5
in degree 11
-
y24.x1.u2
+ y24.y3.x12.x2
+ y25.x12.x2
+ y23.x1.u2.h
+ y23.y3.x12.x2.h
+ y24.x12.x2.h
+ y22.x1.x2.h5
in degree 11
-
y25.y3.u2
+ y25.y32.x1.x2
+ y26.y3.x1.x2
+ y24.y3.u2.h
+ y24.y32.x1.x2.h
+ y25.y3.x1.x2.h
+ y23.y3.x2.h5
in degree 11
-
y26.u2
+ y26.y3.x1.x2
+ y27.x1.x2
+ y25.u2.h
+ y25.y3.x1.x2.h
+ y26.x1.x2.h
+ y24.x2.h5
in degree 11
-
y35.x1.u2
+ y36.x12.x2
+ y2.y34.x1.u2
+ y22.y33.x1.u2
+ y23.y33.x12.x2
+ y34.x1.u2.h
+ y35.x12.x2.h
+ y2.y33.x1.u2.h
+ y22.y33.x12.x2.h
+ y33.x1.x2.h5
in degree 12
-
y24.y3.x1.u2
+ y24.y32.x12.x2
+ y25.y3.x12.x2
+ y23.y3.x1.u2.h
+ y23.y32.x12.x2.h
+ y24.y3.x12.x2.h
+ y22.y3.x1.x2.h5
in degree 12
-
y25.x1.u2
+ y25.y3.x12.x2
+ y26.x12.x2
+ y24.x1.u2.h
+ y24.y3.x12.x2.h
+ y25.x12.x2.h
+ y23.x1.x2.h5
in degree 12
-
y26.y3.u2
+ y26.y32.x1.x2
+ y27.y3.x1.x2
+ y25.y3.u2.h
+ y25.y32.x1.x2.h
+ y26.y3.x1.x2.h
+ y24.y3.x2.h5
in degree 12
-
y25.y3.x1.u2
+ y25.y32.x12.x2
+ y26.y3.x12.x2
+ y24.y3.x1.u2.h
+ y24.y32.x12.x2.h
+ y25.y3.x12.x2.h
+ y23.y3.x1.x2.h5
in degree 13
-
y26.x1.u2
+ y26.y3.x12.x2
+ y27.x12.x2
+ y25.x1.u2.h
+ y25.y3.x12.x2.h
+ y26.x12.x2.h
+ y24.x1.x2.h5
in degree 13
-
y26.y3.x1.u2
+ y26.y32.x12.x2
+ y27.y3.x12.x2
+ y25.y3.x1.u2.h
+ y25.y32.x12.x2.h
+ y26.y3.x12.x2.h
+ y24.y3.x1.x2.h5
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1
in degree 1
-
y1.y3
in degree 2
-
y1.y2
in degree 2
-
y1.x1
in degree 3
-
y1.y32
in degree 3
-
y1.y2.y3
in degree 3
-
y1.y22
in degree 3
-
y1.y3.x1
in degree 4
-
y1.y33
in degree 4
-
y1.y2.x1
in degree 4
-
y1.y22.y3
in degree 4
-
y1.y23
in degree 4
-
y1.y32.x1
in degree 5
-
y1.y2.y3.x1
in degree 5
-
y1.y22.x1
in degree 5
-
y1.y23.y3
in degree 5
-
y1.y24
in degree 5
-
y1.y33.x1
in degree 6
-
y1.y22.y3.x1
in degree 6
-
y1.y23.x1
in degree 6
-
y1.y24.y3
in degree 6
-
y1.y23.y3.x1
in degree 7
-
y1.y24.x1
in degree 7
-
y1.y24.y3.x1
in degree 8
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- y4 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- t restricts to
0
- r restricts to
y8
Restriction to special subgroup number 2, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y3
- y3 restricts to
0
- y4 restricts to
y2
- x1 restricts to
y42
+ y2.y4
- x2 restricts to
0
- u1 restricts to
y45
+ y32.y43
+ y2.y3.y43
+ y22.y43
+ y22.y32.y4
+ y23.y3.y4
+ y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u2 restricts to
0
- t restricts to
y46
+ y32.y44
+ y2.y45
+ y22.y44
+ y22.y32.y42
+ y23.y43
- r restricts to
y48
+ y3.y47
+ y34.y44
+ y35.y43
+ y2.y47
+ y2.y34.y43
+ y22.y46
+ y22.y33.y43
+ y22.y34.y42
+ y22.y35.y4
+ y23.y34.y4
+ y24.y33.y4
+ y25.y43
+ y26.y3.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y33.y42
+ y1.y22.y34.y4
+ y1.y22.y35
+ y1.y23.y33.y4
+ y1.y23.y34
+ y1.y24.y32.y4
+ y1.y24.y33
+ y1.y25.y3.y4
+ y1.y26.y3
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y33.y42
+ y12.y2.y34.y4
+ y12.y2.y35
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y33.y4
+ y12.y24.y3.y4
+ y12.y24.y32
+ y12.y25.y4
+ y12.y26
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y32.y4
+ y14.y2.y33
+ y14.y22.y32
+ y14.y23.y4
+ y14.y23.y3
+ y18
Restriction to special subgroup number 3, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y3
- y4 restricts to
y2
- x1 restricts to
y42
+ y2.y4
- x2 restricts to
0
- u1 restricts to
y45
+ y32.y43
+ y2.y3.y43
+ y22.y43
+ y22.y32.y4
+ y23.y3.y4
+ y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u2 restricts to
0
- t restricts to
y46
+ y32.y44
+ y2.y45
+ y2.y3.y44
+ y22.y44
+ y22.y32.y42
+ y23.y43
+ y23.y3.y42
- r restricts to
y48
+ y3.y47
+ y32.y46
+ y33.y45
+ y34.y44
+ y2.y47
+ y2.y32.y45
+ y22.y46
+ y22.y3.y45
+ y22.y33.y43
+ y22.y34.y42
+ y23.y3.y44
+ y24.y3.y43
+ y24.y32.y42
+ y25.y43
+ y25.y3.y42
+ y25.y32.y4
+ y26.y3.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y33.y42
+ y1.y22.y34.y4
+ y1.y23.y33.y4
+ y1.y24.y32.y4
+ y1.y25.y3.y4
+ y1.y25.y32
+ y1.y26.y3
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y33.y42
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y33.y4
+ y12.y22.y34
+ y12.y24.y3.y4
+ y12.y25.y4
+ y12.y25.y3
+ y12.y26
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y32.y4
+ y14.y22.y32
+ y14.y23.y4
+ y18
Restriction to special subgroup number 4, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- y4 restricts to
y4
- x1 restricts to
y3.y4
+ y32
- x2 restricts to
y42
- u1 restricts to
y45
+ y32.y43
+ y33.y42
+ y34.y4
+ y35
+ y2.y44
+ y2.y3.y43
+ y2.y33.y4
+ y22.y43
+ y22.y32.y4
+ y22.y33
+ y1.y2.y43
+ y1.y22.y42
+ y12.y43
+ y12.y2.y42
+ y12.y22.y4
+ y14.y4
- u2 restricts to
y32.y43
+ y34.y4
+ y22.y3.y42
+ y22.y32.y4
- t restricts to
y46
+ y34.y42
+ y36
+ y2.y45
+ y2.y3.y44
+ y2.y33.y42
+ y22.y44
+ y22.y3.y43
+ y22.y32.y42
+ y22.y33.y4
+ y22.y34
+ y1.y2.y44
+ y1.y22.y43
+ y12.y44
+ y12.y2.y43
+ y12.y22.y42
+ y14.y42
- r restricts to
y48
+ y3.y47
+ y34.y44
+ y35.y43
+ y36.y42
+ y37.y4
+ y38
+ y2.y3.y46
+ y2.y32.y45
+ y2.y35.y42
+ y2.y37
+ y22.y46
+ y22.y3.y45
+ y22.y34.y42
+ y23.y45
+ y23.y3.y44
+ y23.y34.y4
+ y24.y33.y4
+ y24.y34
+ y25.y43
+ y25.y32.y4
+ y25.y33
+ y1.y2.y3.y45
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y23.y3.y43
+ y1.y23.y32.y42
+ y1.y24.y43
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y25.y42
+ y12.y3.y45
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y43
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y24.y3.y4
+ y12.y24.y32
+ y12.y25.y4
+ y14.y44
+ y14.y3.y43
+ y14.y34
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y23.y4
+ y14.y24
+ y18
Restriction to special subgroup number 5, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- y4 restricts to
y4
- x1 restricts to
y3.y4
+ y32
- x2 restricts to
y42
- u1 restricts to
y45
+ y32.y43
+ y33.y42
+ y34.y4
+ y35
+ y2.y44
+ y2.y3.y43
+ y2.y33.y4
+ y22.y43
+ y22.y32.y4
+ y22.y33
+ y1.y2.y43
+ y1.y22.y42
+ y12.y43
+ y12.y2.y42
+ y12.y22.y4
+ y14.y4
- u2 restricts to
y32.y43
+ y34.y4
+ y22.y3.y42
+ y22.y32.y4
- t restricts to
y46
+ y34.y42
+ y36
+ y2.y45
+ y2.y33.y42
+ y2.y34.y4
+ y22.y44
+ y22.y3.y43
+ y22.y32.y42
+ y22.y33.y4
+ y22.y34
+ y1.y2.y44
+ y1.y22.y43
+ y12.y44
+ y12.y2.y43
+ y12.y22.y42
+ y14.y42
- r restricts to
y48
+ y3.y47
+ y34.y44
+ y35.y43
+ y36.y42
+ y37.y4
+ y38
+ y2.y3.y46
+ y2.y32.y45
+ y2.y33.y44
+ y2.y34.y43
+ y2.y36.y4
+ y2.y37
+ y22.y46
+ y22.y33.y43
+ y22.y34.y42
+ y22.y35.y4
+ y22.y36
+ y23.y3.y44
+ y23.y32.y43
+ y23.y33.y42
+ y23.y35
+ y24.y44
+ y24.y3.y43
+ y24.y34
+ y25.y3.y42
+ y25.y32.y4
+ y1.y2.y3.y45
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y23.y3.y43
+ y1.y23.y32.y42
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y3.y45
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y3.y43
+ y14.y34
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 6, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y3
- y3 restricts to
y4
- y4 restricts to
y4
+ y3
- x1 restricts to
y2.y4
+ y2.y3
+ y22
- x2 restricts to
y42
+ y3.y4
- u1 restricts to
y45
+ y3.y44
+ y32.y43
+ y33.y42
+ y2.y44
+ y2.y3.y43
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y23.y32
+ y24.y4
+ y25
+ y1.y3.y43
+ y1.y33.y4
+ y12.y43
+ y12.y33
+ y14.y4
+ y14.y3
- u2 restricts to
y2.y44
+ y2.y33.y4
+ y22.y3.y42
+ y24.y4
- t restricts to
y46
+ y3.y45
+ y32.y44
+ y33.y43
+ y2.y45
+ y2.y3.y44
+ y2.y32.y43
+ y2.y33.y42
+ y22.y44
+ y22.y3.y43
+ y22.y32.y42
+ y22.y34
+ y23.y33
+ y24.y42
+ y25.y3
+ y26
+ y1.y3.y44
+ y1.y33.y42
+ y12.y44
+ y12.y33.y4
+ y14.y42
+ y14.y3.y4
- r restricts to
y48
+ y32.y46
+ y35.y43
+ y36.y42
+ y37.y4
+ y2.y47
+ y2.y3.y46
+ y2.y35.y42
+ y2.y36.y4
+ y22.y46
+ y22.y36
+ y23.y45
+ y23.y33.y42
+ y23.y34.y4
+ y24.y32.y42
+ y24.y34
+ y25.y43
+ y26.y42
+ y26.y32
+ y28
+ y1.y32.y45
+ y1.y33.y44
+ y1.y35.y42
+ y1.y36.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y3.y45
+ y12.y33.y43
+ y12.y35.y4
+ y12.y36
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y3.y43
+ y14.y32.y42
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 7, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y4
- y3 restricts to
y3
- y4 restricts to
y4
+ y3
- x1 restricts to
y2.y4
+ y2.y3
+ y22
- x2 restricts to
y42
+ y3.y4
- u1 restricts to
y45
+ y34.y4
+ y2.y44
+ y2.y3.y43
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y23.y32
+ y24.y4
+ y25
+ y1.y3.y43
+ y1.y33.y4
+ y12.y43
+ y12.y33
+ y14.y4
+ y14.y3
- u2 restricts to
y2.y44
+ y2.y33.y4
+ y22.y3.y42
+ y24.y4
- t restricts to
y46
+ y34.y42
+ y22.y44
+ y22.y3.y43
+ y23.y33
+ y24.y32
+ y25.y3
+ y26
+ y1.y3.y44
+ y1.y33.y42
+ y12.y44
+ y12.y33.y4
+ y14.y42
+ y14.y3.y4
- r restricts to
y32.y46
+ y33.y45
+ y37.y4
+ y2.y34.y43
+ y2.y36.y4
+ y22.y3.y45
+ y22.y34.y42
+ y22.y35.y4
+ y22.y36
+ y23.y35
+ y24.y3.y43
+ y24.y32.y42
+ y25.y3.y42
+ y25.y32.y4
+ y25.y33
+ y26.y42
+ y26.y3.y4
+ y28
+ y1.y3.y46
+ y1.y32.y45
+ y1.y33.y44
+ y1.y36.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y46
+ y12.y3.y45
+ y12.y32.y44
+ y12.y36
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y33.y4
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
(1 + 3t + 6t2
+ 9t3 + 11t4 + 13t5
+ 14t6 + 15t7 + 15t8
+ 14t9 + 13t10 + 11t11
+ 9t12 + 6t13 + 3t14
+ t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128