Small group number 1758 of order 128
G is the group 128gp1758
G has 4 minimal generators, rank 4 and exponent 4.
The centre has rank 1.
There are 6 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
4, 4, 4, 4, 4, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 11 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- y4 in degree 1
- x1 in degree 2
- x2 in degree 2
- w in degree 3
- u1 in degree 5
- u2 in degree 5
- u3 in degree 5
- r in degree 8, a regular element
There are 27 minimal relations:
- y2.y4 =
0
- y1.y4 =
0
- y3.y42 =
0
- y32.y4 =
y2.x2
+ y1.x1
- y3.y4.x2 =
y2.y3.x2
+ y1.w
+ y1.y3.x2
+ y1.y3.x1
+ y12.x1
- y3.y4.x1 =
y2.w
+ y2.y3.x2
+ y2.y3.x1
+ y1.y3.x1
+ y12.x1
- y1.y2.x1 =
y12.x1
- y3.y4.w =
y2.y32.x2
+ y1.y32.x1
- y1.x1.x2 =
y1.x12
+ y1.y3.w
+ y1.y32.x2
+ y12.y3.x1
- w2 =
x1.x22
+ x12.x2
+ y4.u2
+ y42.x1.x2
+ y43.w
+ y32.x22
+ y32.x1.x2
+ y32.x12
+ y1.x2.w
+ y1.y3.x22
+ y1.y32.w
+ y1.y33.x2
+ y12.y32.x1
- y4.u3 =
y4.x2.w
+ y42.x1.x2
+ y43.w
+ y2.x1.w
+ y2.y3.x12
+ y2.y32.w
+ y2.y33.x2
+ y2.y33.x1
+ y1.x1.w
+ y1.y3.x12
+ y1.y32.w
+ y1.y33.x2
+ y1.y33.x1
- y4.u1 =
y4.x2.w
+ y4.x1.w
+ y43.w
+ y2.x1.w
+ y2.y3.x12
+ y2.y32.w
+ y2.y33.x1
+ y12.x12
+ y12.y32.x1
- y2.u3 =
y2.u1
+ y2.x1.w
+ y2.y33.x2
+ y1.u1
+ y1.x2.w
+ y1.x1.w
+ y1.y32.w
+ y1.y33.x1
+ y12.y32.x1
+ y13.y3.x1
+ y14.x1
- y2.u2 =
y2.x1.w
+ y2.y3.x12
+ y2.y32.w
+ y2.y33.x2
+ y1.u1
+ y1.x2.w
+ y1.x1.w
+ y1.y3.x12
+ y1.y32.w
+ y12.x12
+ y12.y32.x1
- y1.u3 =
y1.u2
+ y1.u1
+ y1.x2.w
+ y1.x1.w
+ y1.y32.w
+ y1.y33.x2
+ y12.x12
+ y13.y3.x1
+ y14.x1
- x2.u1 =
x22.w
+ x1.u3
+ x1.u1
+ x1.x2.w
+ x12.w
+ y4.x12.x2
+ y42.x2.w
+ y3.x1.x22
+ y3.x12.x2
+ y32.u3
+ y32.u2
+ y32.u1
+ y32.x2.w
+ y33.x22
+ y33.x12
+ y34.w
+ y35.x2
+ y2.y3.x1.w
+ y2.y32.x12
+ y2.y34.x2
+ y1.y3.x1.w
+ y1.y32.x12
+ y1.y34.x1
+ y12.y3.x12
+ y12.y33.x1
+ y13.x12
+ y13.y32.x1
- y3.y4.u2 =
y2.y3.x1.w
+ y2.y32.x12
+ y1.y33.w
+ y1.y34.x2
+ y12.y3.x12
+ y12.y33.x1
- w.u3 =
x1.x23
+ x12.x22
+ y4.x2.u2
+ y4.x1.x2.w
+ y42.x12.x2
+ y43.u2
+ y43.x2.w
+ y44.x1.x2
+ y45.w
+ y3.x2.u2
+ y3.x22.w
+ y3.x1.u3
+ y3.x1.u2
+ y32.x23
+ y32.x1.x22
+ y32.x12.x2
+ y33.x2.w
+ y34.x12
+ y2.y35.x2
+ y1.x22.w
+ y1.x12.w
+ y1.y3.x23
+ y1.y3.x13
+ y1.y32.x2.w
+ y1.y32.x1.w
+ y1.y33.x22
+ y1.y33.x12
+ y1.y35.x1
+ y12.x13
+ y13.y3.x12
+ y14.x12
- w.u1 =
x1.x23
+ x13.x2
+ y4.x2.u2
+ y4.x1.u2
+ y43.u2
+ y43.x2.w
+ y43.x1.w
+ y44.x1.x2
+ y45.w
+ y3.x1.u3
+ y3.x1.u2
+ y3.x1.x2.w
+ y32.x23
+ y32.x12.x2
+ y32.x13
+ y33.u3
+ y33.u2
+ y33.u1
+ y35.w
+ y36.x2
+ y2.y34.w
+ y2.y35.x1
+ y1.x22.w
+ y1.x1.u1
+ y1.x12.w
+ y1.y3.x23
+ y1.y3.x13
+ y1.y32.x1.w
+ y1.y33.x12
+ y13.y3.x12
+ y13.y33.x1
- y1.x1.u2 =
y1.x1.u1
+ y1.x12.w
+ y1.y33.x12
+ y12.x13
+ y12.y32.x12
- x1.x2.u3 =
x1.x22.w
+ y4.x12.x22
+ y42.x1.x2.w
+ y3.w.u2
+ y3.x1.x23
+ y3.x12.x22
+ y32.x2.u3
+ y32.x22.w
+ y32.x1.u2
+ y32.x1.x2.w
+ y33.x23
+ y33.x12.x2
+ y34.x1.w
+ y35.x22
+ y35.x12
+ y2.y3.x12.w
+ y2.y32.x13
+ y2.y33.x1.w
+ y2.y34.x12
+ y2.y36.x2
+ y1.y3.x22.w
+ y1.y3.x1.u1
+ y1.y3.x12.w
+ y1.y32.x23
+ y1.y32.x13
+ y1.y33.x2.w
+ y1.y34.x22
+ y1.y36.x1
+ y13.x13
+ y13.y32.x12
- u32 =
x1.x24
+ x12.x23
+ y4.x22.u2
+ y42.x1.x23
+ y42.x12.x22
+ y43.x22.w
+ y44.x1.x22
+ y44.x12.x2
+ y45.u2
+ y46.x1.x2
+ y47.w
+ y32.x24
+ y32.x13.x2
+ y32.x14
+ y34.x23
+ y34.x13
+ y36.x12
+ y38.x2
+ y38.x1
+ y2.y32.x1.u1
+ y2.y34.u1
+ y2.y34.x1.w
+ y2.y37.x1
+ y22.y32.x13
+ y22.y34.x12
+ y23.x1.u1
+ y23.y32.u1
+ y23.y35.x1
+ y24.y3.u1
+ y24.y34.x1
+ y25.u1
+ y25.y3.x12
+ y25.y33.x1
+ y1.x23.w
+ y1.y3.x24
+ y1.y32.x2.u2
+ y1.y32.x22.w
+ y1.y32.x12.w
+ y1.y33.x13
+ y1.y34.u2
+ y1.y34.x2.w
+ y1.y34.x1.w
+ y1.y35.x22
+ y1.y36.w
+ y1.y37.x1
+ y1.y2.y33.u1
+ y1.y23.y3.u1
+ y1.y24.u1
+ y12.y32.x23
+ y12.y33.u2
+ y12.y36.x2
+ y12.y2.y32.u1
+ y12.y22.y3.u1
+ y12.y23.u1
+ y13.x2.u2
+ y13.y3.x23
+ y13.y33.x22
+ y13.y22.u1
+ y14.y3.u2
+ y14.y32.x12
+ y14.y34.x2
+ y14.y34.x1
+ y15.y3.x12
+ y16.x12
+ y16.y32.x2
+ y16.y32.x1
+ y17.y3.x2
+ y17.y3.x1
+ y22.r
+ y12.r
- u2.u3 =
x2.w.u2
+ y4.x1.x2.u2
+ y42.w.u2
+ y3.x22.u2
+ y3.x23.w
+ y3.x1.x2.u2
+ y3.x13.w
+ y32.w.u2
+ y32.x1.x23
+ y32.x14
+ y33.x2.u3
+ y33.x2.u2
+ y33.x1.u3
+ y33.x1.u2
+ y33.x1.x2.w
+ y33.x12.w
+ y34.x23
+ y34.x1.x22
+ y34.x12.x2
+ y34.x13
+ y35.x2.w
+ y36.x22
+ y37.w
+ y38.x1
+ y2.y32.x12.w
+ y2.y33.x13
+ y2.y36.w
+ y2.y37.x1
+ y1.y32.x2.u2
+ y1.y32.x12.w
+ y1.y33.x23
+ y1.y34.u2
+ y1.y34.u1
+ y1.y34.x2.w
+ y1.y35.x12
+ y1.y22.y32.u1
+ y1.y23.y3.u1
+ y1.y24.u1
+ y12.y3.x1.u1
+ y12.y32.x23
+ y12.y33.u2
+ y12.y33.u1
+ y12.y34.x22
+ y12.y36.x1
+ y12.y2.y32.u1
+ y13.x2.u2
+ y13.y3.x23
+ y13.y3.x13
+ y13.y33.x22
+ y13.y35.x1
+ y13.y2.y3.u1
+ y13.y22.u1
+ y14.y3.u2
+ y14.y3.u1
+ y14.y32.x22
+ y14.y34.x1
+ y15.y33.x1
+ y16.y32.x2
+ y16.y32.x1
+ y17.y3.x2
+ y17.y3.x1
+ y1.y2.r
+ y12.r
- u22 =
x1.x24
+ x14.x2
+ y4.x22.u2
+ y4.x1.x2.u2
+ y4.x1.x22.w
+ y4.x12.u2
+ y4.x12.x2.w
+ y42.x1.x23
+ y43.x2.u2
+ y43.x1.u2
+ y43.x12.w
+ y44.x1.x22
+ y45.x1.w
+ y46.x1.x2
+ y32.x24
+ y32.x1.x23
+ y34.x23
+ y36.x22
+ y36.x12
+ y38.x2
+ y2.y34.x1.w
+ y2.y35.x12
+ y1.x23.w
+ y1.y3.x24
+ y1.y32.x2.u2
+ y1.y32.x12.w
+ y1.y33.x23
+ y1.y34.u2
+ y1.y37.x2
+ y1.y37.x1
+ y12.y32.x23
+ y12.y32.x13
+ y12.y33.u2
+ y12.y34.x12
+ y12.y36.x2
+ y12.y2.y32.u1
+ y12.y22.y3.u1
+ y12.y23.u1
+ y13.x2.u2
+ y13.y3.x23
+ y13.y33.x22
+ y13.y35.x1
+ y13.y2.y3.u1
+ y13.y22.u1
+ y14.x13
+ y14.y3.u2
+ y14.y32.x12
+ y14.y34.x2
+ y15.y3.x12
+ y16.y32.x2
+ y16.y32.x1
+ y17.y3.x2
+ y18.x1
+ y42.r
+ y12.r
- u1.u3 =
x1.x24
+ x13.x22
+ y4.x22.u2
+ y4.x1.x2.u2
+ y4.x1.x22.w
+ y4.x12.x2.w
+ y42.x1.x23
+ y42.x13.x2
+ y43.x22.w
+ y43.x1.u2
+ y44.x1.x22
+ y45.u2
+ y45.x1.w
+ y46.x1.x2
+ y47.w
+ y3.x22.u2
+ y3.x23.w
+ y3.x1.x2.u2
+ y3.x12.u3
+ y3.x12.u2
+ y32.w.u2
+ y32.x24
+ y32.x1.x23
+ y32.x12.x22
+ y32.x13.x2
+ y32.x14
+ y33.x2.u3
+ y33.x2.u2
+ y33.x1.u3
+ y33.x1.u1
+ y33.x1.x2.w
+ y34.x23
+ y34.x1.x22
+ y34.x13
+ y35.u3
+ y35.u2
+ y35.u1
+ y35.x2.w
+ y35.x1.w
+ y2.y32.x1.u1
+ y2.y32.x12.w
+ y2.y33.x13
+ y2.y34.u1
+ y2.y35.x12
+ y2.y37.x1
+ y22.y32.x13
+ y22.y34.x12
+ y23.x1.u1
+ y23.y32.u1
+ y23.y35.x1
+ y24.y3.u1
+ y24.y34.x1
+ y25.u1
+ y25.y3.x12
+ y25.y33.x1
+ y1.x23.w
+ y1.x12.u1
+ y1.y3.x24
+ y1.y32.x22.w
+ y1.y33.x23
+ y1.y33.x13
+ y1.y34.u1
+ y1.y34.x1.w
+ y1.y35.x22
+ y1.y35.x12
+ y1.y36.w
+ y1.y37.x1
+ y1.y2.y33.u1
+ y1.y22.y32.u1
+ y12.x14
+ y12.y3.x1.u1
+ y12.y33.u1
+ y12.y34.x22
+ y12.y36.x2
+ y12.y36.x1
+ y12.y22.y3.u1
+ y12.y23.u1
+ y13.y3.x13
+ y13.y2.y3.u1
+ y14.y3.u1
+ y14.y32.x22
+ y14.y32.x12
+ y14.y34.x2
+ y15.y3.x12
+ y15.y33.x1
+ y22.r
+ y1.y2.r
- u1.u2 =
x2.w.u2
+ x1.w.u2
+ y42.w.u2
+ y3.x1.x22.w
+ y3.x12.u3
+ y3.x12.u1
+ y3.x12.x2.w
+ y32.w.u2
+ y32.x1.x23
+ y32.x12.x22
+ y32.x13.x2
+ y32.x14
+ y33.x22.w
+ y33.x1.u3
+ y34.x23
+ y34.x1.x22
+ y34.x12.x2
+ y35.x1.w
+ y37.w
+ y38.x2
+ y38.x1
+ y1.y3.x14
+ y1.y32.x22.w
+ y1.y32.x1.u1
+ y1.y32.x12.w
+ y1.y33.x23
+ y1.y33.x13
+ y1.y34.u1
+ y1.y34.x2.w
+ y1.y34.x1.w
+ y1.y35.x12
+ y1.y36.w
+ y1.y37.x1
+ y1.y22.y32.u1
+ y1.y23.y3.u1
+ y1.y24.u1
+ y12.x14
+ y12.y33.u1
+ y12.y34.x22
+ y12.y36.x2
+ y12.y36.x1
+ y12.y22.y3.u1
+ y12.y23.u1
+ y13.x1.u1
+ y13.y3.x13
+ y13.y33.x12
+ y14.x13
+ y14.y3.u1
+ y14.y32.x22
+ y14.y34.x2
+ y14.y34.x1
+ y15.y3.x12
+ y15.y33.x1
+ y17.y3.x1
+ y18.x1
+ y1.y2.r
- u12 =
x1.x24
+ x12.x23
+ x13.x22
+ x14.x2
+ y4.x22.u2
+ y4.x12.u2
+ y42.x1.x23
+ y42.x13.x2
+ y43.x22.w
+ y43.x12.w
+ y44.x1.x22
+ y44.x12.x2
+ y45.u2
+ y46.x1.x2
+ y47.w
+ y32.x24
+ y32.x1.x23
+ y32.x12.x22
+ y34.x13
+ y36.x22
+ y36.x1.x2
+ y36.x12
+ y38.x1
+ y2.y32.x1.u1
+ y2.y34.u1
+ y2.y34.x1.w
+ y2.y37.x1
+ y22.y32.x13
+ y22.y34.x12
+ y23.x1.u1
+ y23.y32.u1
+ y23.y35.x1
+ y24.y3.u1
+ y24.y34.x1
+ y25.u1
+ y25.y3.x12
+ y25.y33.x1
+ y1.x23.w
+ y1.x13.w
+ y1.y3.x24
+ y1.y3.x14
+ y1.y32.x22.w
+ y1.y32.x12.w
+ y1.y33.x23
+ y1.y34.x2.w
+ y1.y35.x22
+ y1.y35.x12
+ y1.y36.w
+ y1.y37.x2
+ y1.y2.y33.u1
+ y1.y23.y3.u1
+ y1.y24.u1
+ y12.x14
+ y13.y35.x1
+ y13.y2.y3.u1
+ y14.x13
+ y14.y32.x12
+ y14.y34.x1
+ y17.y3.x1
+ y18.x1
+ y22.r
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y22.x2 =
y1.y2.x1
- y1.y2.x2 =
y12.x1
- y2.x22 =
y2.y32.x2
+ y1.x1.x2
+ y1.y3.w
+ y1.y32.x2
+ y1.y32.x1
+ y12.y3.x1
- y2.x1.x2 =
y2.y3.w
+ y2.y32.x2
+ y2.y32.x1
+ y1.x12
+ y1.y32.x1
+ y12.y3.x1
- y22.w =
y22.y3.x1
+ y13.x1
- y1.y2.w =
y12.y3.x1
+ y13.x1
- y12.w =
y12.y3.x2
+ y13.x1
- y2.x2.w =
y2.y33.x2
+ y1.x1.w
+ y1.y33.x1
- y1.w.u2 =
y1.y3.x2.u2
+ y1.y3.x12.w
+ y1.y32.x13
+ y1.y33.x2.w
+ y1.y34.x22
+ y1.y35.w
+ y1.y36.x2
+ y12.x1.u1
+ y12.y35.x1
+ y13.y32.x12
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 10 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 3.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
x22
+ x1.x2
+ x12
+ y44
+ y3.w
+ y34
+ y2.w
+ y22.y32
+ y24
+ y1.w
+ y1.y2.y32
+ y1.y22.y3
+ y12.y32
+ y12.y2.y3
+ y12.y22
+ y14
in degree 4
- h3 =
x1.x22
+ x12.x2
+ y42.x22
+ y42.x1.x2
+ y42.x12
+ y3.u3
+ y3.u2
+ y3.u1
+ y3.x1.w
+ y32.x1.x2
+ y32.x12
+ y34.x2
+ y2.x1.w
+ y2.y32.w
+ y2.y33.x2
+ y2.y33.x1
+ y22.x12
+ y22.y34
+ y23.y3.x1
+ y24.y32
+ y1.x2.w
+ y1.x1.w
+ y1.y2.y34
+ y1.y24.y3
+ y12.x22
+ y12.y34
+ y12.y22.y32
+ y12.y24
+ y13.y3.x2
+ y14.y32
+ y14.y2.y3
+ y14.y22
in degree 6
- h4 =
y4
+ y3
in degree 1
The first
3 terms h1, h2, h3 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, -1, 13, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y2
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
x1
in degree 2
-
y32
in degree 2
-
y22
in degree 2
-
y1.y2
in degree 2
-
y12
in degree 2
-
w
in degree 3
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
y2.x1
in degree 3
-
y23
in degree 3
-
y1.x2
in degree 3
-
y1.x1
in degree 3
-
y1.y22
in degree 3
-
y12.y2
in degree 3
-
y13
in degree 3
-
x1.x2
in degree 4
-
x12
in degree 4
-
y3.w
in degree 4
-
y2.w
in degree 4
-
y22.x1
in degree 4
-
y24
in degree 4
-
y1.w
in degree 4
-
y1.y23
in degree 4
-
y12.x2
in degree 4
-
y12.x1
in degree 4
-
y12.y22
in degree 4
-
y13.y2
in degree 4
-
y14
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
x2.w
in degree 5
-
x1.w
in degree 5
-
y3.x1.x2
in degree 5
-
y3.x12
in degree 5
-
y23.x1
in degree 5
-
y25
in degree 5
-
y1.x12
in degree 5
-
y1.y24
in degree 5
-
y12.y23
in degree 5
-
y13.x2
in degree 5
-
y13.x1
in degree 5
-
y13.y22
in degree 5
-
y14.y2
in degree 5
-
y15
in degree 5
-
x12.x2
in degree 6
-
y3.u2
in degree 6
-
y3.x2.w
in degree 6
-
y3.x1.w
in degree 6
-
y2.u1
in degree 6
-
y24.x1
in degree 6
-
y26
in degree 6
-
y1.u2
in degree 6
-
y1.u1
in degree 6
-
y1.x2.w
in degree 6
-
y1.x1.w
in degree 6
-
y12.x12
in degree 6
-
y12.y24
in degree 6
-
y13.y23
in degree 6
-
y14.x2
in degree 6
-
y14.x1
in degree 6
-
y14.y22
in degree 6
-
y15.y2
in degree 6
-
y16
in degree 6
-
x2.u3
in degree 7
-
x2.u2
in degree 7
-
x1.u3
in degree 7
-
x1.u2
in degree 7
-
x1.u1
in degree 7
-
x1.x2.w
in degree 7
-
x12.w
in degree 7
-
y3.x12.x2
in degree 7
-
y22.u1
in degree 7
-
y25.x1
in degree 7
-
y1.y2.u1
in degree 7
-
y12.u2
in degree 7
-
y12.u1
in degree 7
-
y13.x12
in degree 7
-
y13.y24
in degree 7
-
y14.y23
in degree 7
-
y15.x2
in degree 7
-
y15.x1
in degree 7
-
y15.y22
in degree 7
-
y16.y2
in degree 7
-
w.u2
in degree 8
-
y3.x2.u2
in degree 8
-
y3.x1.u2
in degree 8
-
y3.x1.x2.w
in degree 8
-
y3.x12.w
in degree 8
-
y2.x1.u1
in degree 8
-
y23.u1
in degree 8
-
y26.x1
in degree 8
-
y1.x2.u2
in degree 8
-
y1.x1.u1
in degree 8
-
y1.x12.w
in degree 8
-
y1.y22.u1
in degree 8
-
y12.y2.u1
in degree 8
-
y13.u2
in degree 8
-
y13.u1
in degree 8
-
y14.x12
in degree 8
-
y14.y24
in degree 8
-
y15.y23
in degree 8
-
y16.x2
in degree 8
-
y16.x1
in degree 8
-
y16.y22
in degree 8
-
x1.x2.u2
in degree 9
-
x12.u3
in degree 9
-
x12.u2
in degree 9
-
x12.x2.w
in degree 9
-
y3.w.u2
in degree 9
-
y22.x1.u1
in degree 9
-
y24.u1
in degree 9
-
y1.y23.u1
in degree 9
-
y12.x2.u2
in degree 9
-
y12.x1.u1
in degree 9
-
y12.y22.u1
in degree 9
-
y13.y2.u1
in degree 9
-
y14.u2
in degree 9
-
y14.u1
in degree 9
-
y15.x12
in degree 9
-
y15.y24
in degree 9
-
y16.y23
in degree 9
-
x2.w.u2
in degree 10
-
x1.w.u2
in degree 10
-
y3.x1.x2.u2
in degree 10
-
y3.x12.u2
in degree 10
-
y3.x12.x2.w
in degree 10
-
y23.x1.u1
in degree 10
-
y25.u1
in degree 10
-
y1.y24.u1
in degree 10
-
y12.y23.u1
in degree 10
-
y13.x2.u2
in degree 10
-
y13.x1.u1
in degree 10
-
y13.y22.u1
in degree 10
-
y14.y2.u1
in degree 10
-
y15.u2
in degree 10
-
y15.u1
in degree 10
-
y16.x12
in degree 10
-
y16.y24
in degree 10
-
x12.x2.u2
in degree 11
-
y24.x1.u1
in degree 11
-
y26.u1
in degree 11
-
y12.y24.u1
in degree 11
-
y13.y23.u1
in degree 11
-
y14.x2.u2
in degree 11
-
y14.x1.u1
in degree 11
-
y14.y22.u1
in degree 11
-
y15.y2.u1
in degree 11
-
y16.u2
in degree 11
-
y16.u1
in degree 11
-
x1.x2.w.u2
in degree 12
-
x12.w.u2
in degree 12
-
y3.x12.x2.u2
in degree 12
-
y25.x1.u1
in degree 12
-
y13.y24.u1
in degree 12
-
y14.y23.u1
in degree 12
-
y15.x2.u2
in degree 12
-
y15.x1.u1
in degree 12
-
y15.y22.u1
in degree 12
-
y16.y2.u1
in degree 12
-
y14.y24.u1
in degree 13
-
y15.y23.u1
in degree 13
-
y16.x2.u2
in degree 13
-
y16.x1.u1
in degree 13
-
y16.y22.u1
in degree 13
-
x12.x2.w.u2
in degree 14
-
y15.y24.u1
in degree 14
-
y16.y23.u1
in degree 14
-
y16.y24.u1
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y32.h5
+ y3.h6
in degree 7
-
y2.w.h5
+ y12.x1.h5
+ y2.x1.h6
in degree 9
-
y1.w.h5
+ y12.x1.h5
+ y1.x2.h6
in degree 9
-
y1.x2.w.h5
+ y12.x1.x2.h5
+ y1.x22.h6
in degree 11
-
y1.x1.w.h5
+ y12.x12.h5
+ y1.x1.x2.h6
in degree 11
-
y1.x12.w.h5
+ y12.x13.h5
+ y1.x12.x2.h6
in degree 13
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- y4 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- r restricts to
y8
Restriction to special subgroup number 2, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- y4 restricts to
y2
- x1 restricts to
y42
+ y2.y4
- x2 restricts to
y32
+ y2.y3
- w restricts to
y3.y42
+ y32.y4
+ y1.y22
+ y12.y2
- u1 restricts to
y3.y44
+ y32.y43
+ y33.y42
+ y34.y4
+ y2.y3.y43
+ y2.y33.y4
+ y22.y3.y42
+ y22.y32.y4
+ y1.y22.y42
+ y1.y22.y32
+ y1.y23.y4
+ y1.y23.y3
+ y1.y24
+ y12.y2.y42
+ y12.y2.y32
+ y12.y22.y4
+ y12.y22.y3
+ y12.y23
- u2 restricts to
y3.y44
+ y34.y4
+ y2.y32.y42
+ y22.y3.y42
+ y22.y32.y4
+ y23.y3.y4
+ y1.y24
+ y14.y2
- u3 restricts to
y33.y42
+ y34.y4
+ y2.y33.y4
+ y23.y3.y4
+ y1.y22.y32
+ y1.y23.y3
+ y1.y24
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
- r restricts to
y32.y46
+ y2.y32.y45
+ y2.y35.y42
+ y22.y32.y44
+ y22.y34.y42
+ y22.y35.y4
+ y23.y3.y44
+ y23.y32.y43
+ y23.y34.y4
+ y24.y32.y42
+ y25.y32.y4
+ y26.y3.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y23.y32.y42
+ y1.y23.y34
+ y1.y25.y3.y4
+ y1.y26.y3
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y25.y4
+ y12.y26
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y3.y4
+ y14.y23.y4
+ y14.y23.y3
+ y18
Restriction to special subgroup number 3, which is 16gp14
- y1 restricts to
y2
- y2 restricts to
y3
- y3 restricts to
y4
- y4 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w restricts to
0
- u1 restricts to
y1.y2.y33
+ y1.y22.y32
+ y12.y33
+ y12.y2.y32
+ y12.y22.y3
+ y14.y3
- u2 restricts to
y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u3 restricts to
y1.y2.y33
+ y1.y23.y3
+ y12.y33
+ y12.y23
+ y14.y3
+ y14.y2
- r restricts to
y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y2.y35.y4
+ y1.y2.y36
+ y1.y22.y3.y44
+ y1.y22.y32.y43
+ y1.y22.y33.y42
+ y1.y23.y3.y43
+ y1.y23.y33.y4
+ y1.y23.y34
+ y1.y24.y32.y4
+ y1.y25.y3.y4
+ y12.y32.y44
+ y12.y34.y42
+ y12.y35.y4
+ y12.y36
+ y12.y2.y3.y44
+ y12.y2.y32.y43
+ y12.y2.y33.y42
+ y12.y22.y44
+ y12.y22.y3.y43
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y43
+ y12.y23.y33
+ y12.y24.y3.y4
+ y12.y24.y32
+ y12.y25.y4
+ y14.y44
+ y14.y32.y42
+ y14.y33.y4
+ y14.y2.y43
+ y14.y2.y32.y4
+ y14.y2.y33
+ y14.y22.y32
+ y14.y23.y4
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 16gp14
- y1 restricts to
y2
- y2 restricts to
0
- y3 restricts to
y3
- y4 restricts to
0
- x1 restricts to
0
- x2 restricts to
y42
+ y2.y4
- w restricts to
y3.y42
+ y2.y3.y4
- u1 restricts to
y3.y44
+ y33.y42
+ y2.y33.y4
+ y22.y3.y42
- u2 restricts to
y3.y44
+ y32.y43
+ y33.y42
+ y34.y4
+ y2.y3.y43
+ y2.y32.y42
+ y2.y33.y4
+ y22.y3.y42
+ y22.y32.y4
+ y23.y3.y4
+ y1.y22.y42
+ y1.y23.y4
+ y12.y2.y42
+ y12.y22.y4
+ y12.y23
+ y14.y2
- u3 restricts to
y3.y44
+ y32.y43
+ y34.y4
+ y2.y3.y43
+ y2.y32.y42
+ y22.y3.y42
+ y22.y32.y4
+ y23.y3.y4
+ y1.y22.y42
+ y1.y23.y4
+ y12.y2.y42
+ y12.y22.y4
+ y12.y23
+ y14.y2
- r restricts to
y33.y45
+ y34.y44
+ y37.y4
+ y2.y33.y44
+ y2.y34.y43
+ y2.y35.y42
+ y2.y36.y4
+ y22.y3.y45
+ y22.y35.y4
+ y23.y3.y44
+ y23.y34.y4
+ y24.y3.y43
+ y24.y33.y4
+ y26.y3.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y33.y42
+ y1.y22.y34.y4
+ y1.y23.y44
+ y1.y23.y32.y42
+ y1.y23.y33.y4
+ y1.y24.y3.y42
+ y1.y25.y42
+ y1.y25.y3.y4
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y33.y42
+ y12.y2.y34.y4
+ y12.y22.y33.y4
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y23.y33
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y25.y4
+ y12.y25.y3
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y32.y4
+ y14.y2.y33
+ y14.y23.y4
+ y14.y23.y3
+ y14.y24
+ y18
Restriction to special subgroup number 5, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
y3
- y4 restricts to
0
- x1 restricts to
y42
+ y2.y4
- x2 restricts to
0
- w restricts to
y3.y42
+ y2.y3.y4
- u1 restricts to
y32.y43
+ y33.y42
+ y34.y4
+ y2.y3.y43
+ y2.y33.y4
+ y22.y3.y42
+ y1.y22.y42
+ y1.y23.y4
+ y12.y2.y42
+ y12.y22.y4
+ y12.y23
+ y14.y2
- u2 restricts to
y33.y42
+ y2.y33.y4
- u3 restricts to
y3.y44
+ y32.y43
+ y33.y42
+ y34.y4
+ y2.y3.y43
+ y2.y33.y4
+ y1.y22.y42
+ y1.y23.y4
+ y12.y2.y42
+ y12.y22.y4
+ y12.y23
+ y14.y2
- r restricts to
y33.y45
+ y34.y44
+ y35.y43
+ y36.y42
+ y2.y33.y44
+ y2.y34.y43
+ y2.y35.y42
+ y2.y36.y4
+ y22.y3.y45
+ y22.y32.y44
+ y22.y33.y43
+ y22.y35.y4
+ y23.y3.y44
+ y23.y32.y43
+ y23.y34.y4
+ y24.y32.y42
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y34.y4
+ y1.y23.y44
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y25.y3.y4
+ y1.y26.y4
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y34.y4
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y12.y25.y3
+ y12.y26
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y32.y4
+ y14.y22.y32
+ y14.y23.y4
+ y14.y23.y3
+ y18
Restriction to special subgroup number 6, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- y4 restricts to
0
- x1 restricts to
y42
- x2 restricts to
y32
- w restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y2.y3.y4
+ y2.y32
- u1 restricts to
y3.y44
+ y32.y43
+ y33.y42
+ y34.y4
+ y2.y32.y42
+ y2.y33.y4
+ y2.y34
+ y22.y43
+ y23.y42
+ y23.y3.y4
+ y23.y32
+ y24.y4
- u2 restricts to
y3.y44
+ y34.y4
+ y2.y33.y4
+ y2.y34
+ y22.y33
+ y23.y42
+ y23.y32
+ y24.y3
- u3 restricts to
y33.y42
+ y34.y4
+ y2.y44
+ y2.y3.y43
+ y2.y34
+ y22.y43
+ y22.y33
+ y23.y42
+ y24.y4
+ y24.y3
- r restricts to
y32.y46
+ y2.y32.y45
+ y2.y35.y42
+ y23.y45
+ y23.y3.y44
+ y23.y32.y43
+ y23.y33.y42
+ y23.y35
+ y24.y44
+ y24.y32.y42
+ y24.y33.y4
+ y24.y34
+ y25.y43
+ y25.y3.y42
+ y26.y42
+ y26.y3.y4
+ y27.y3
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 7, which is 16gp14
- y1 restricts to
y3
- y2 restricts to
y3
- y3 restricts to
y2
- y4 restricts to
0
- x1 restricts to
y42
+ y3.y4
- x2 restricts to
y42
+ y3.y4
- w restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y2.y3.y4
- u1 restricts to
y2.y44
+ y2.y3.y43
+ y2.y32.y42
+ y2.y33.y4
+ y22.y43
+ y22.y3.y42
+ y22.y32.y4
+ y23.y42
+ y23.y3.y4
+ y24.y4
+ y1.y32.y42
+ y1.y33.y4
+ y12.y3.y42
+ y12.y32.y4
+ y12.y33
+ y14.y3
- u2 restricts to
y2.y3.y43
+ y2.y33.y4
+ y22.y43
+ y24.y4
+ y1.y32.y42
+ y1.y33.y4
+ y12.y3.y42
+ y12.y32.y4
+ y12.y33
+ y14.y3
- u3 restricts to
y3.y44
+ y34.y4
+ y2.y44
+ y2.y33.y4
+ y23.y42
+ y23.y3.y4
- r restricts to
y48
+ y32.y46
+ y33.y45
+ y35.y43
+ y36.y42
+ y37.y4
+ y2.y3.y46
+ y2.y33.y44
+ y2.y35.y42
+ y2.y36.y4
+ y22.y32.y44
+ y22.y35.y4
+ y23.y45
+ y23.y3.y44
+ y23.y32.y43
+ y23.y33.y42
+ y23.y34.y4
+ y24.y32.y42
+ y24.y33.y4
+ y27.y4
+ y1.y33.y44
+ y1.y35.y42
+ y1.y2.y34.y42
+ y1.y2.y35.y4
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y23.y32.y42
+ y1.y23.y33.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y34.y42
+ y12.y35.y4
+ y12.y2.y33.y42
+ y12.y2.y34.y4
+ y12.y2.y35
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y23.y33
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y33.y4
+ y14.y34
+ y14.y2.y33
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y23.y3
+ y14.y24
+ y18
(1 + 3t + 6t2
+ 10t3 + 13t4 + 17t5
+ 19t6 + 20t7 + 20t8
+ 17t9 + 15t10 + 11t11
+ 8t12 + 5t13 + 2t14
+ t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128