Small group number 1800 of order 128
G is the group 128gp1800
G has 4 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 3 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 10 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- y4 in degree 1
- x in degree 2
- v in degree 4
- u1 in degree 5
- u2 in degree 5
- r1 in degree 8
- r2 in degree 8, a regular element
There are 21 minimal relations:
- y2.y4 =
0
- y1.y4 =
y12
- y2.x =
y1.y32
+ y13
- y2.v =
0
- y1.v =
0
- y1.y32.x =
y1.y34
+ y1.y22.y32
+ y13.x
+ y15
- x.v =
y4.u1
+ y3.y4.v
+ y32.v
+ y1.u1
- y2.u2 =
y2.u1
+ y1.y35
+ y1.y22.y33
+ y15.y3
- y1.u2 =
y1.y3.x2
- v2 =
y42.x3
+ y43.u2
+ y43.u1
+ y44.v
+ y46.x
+ y3.y43.x2
+ y32.y42.v
+ y34.y42.x
+ y12.x3
+ y13.u1
- v.u2 =
y4.r1
+ y4.x4
+ y44.u2
+ y44.u1
+ y45.x2
+ y3.y42.x3
+ y3.y43.u2
+ y3.y43.u1
+ y3.y46.x
+ y32.y42.u2
+ y32.y42.u1
+ y32.y43.v
+ y33.y4.u2
+ y33.y4.u1
+ y33.y42.v
+ y33.y42.x2
+ y33.y44.x
+ y34.y43.x
+ y35.v
+ y1.y3.x.u1
+ y12.x.u1
+ y13.x3
+ y13.y3.u1
+ y14.u1
+ y15.x2
+ y16.y3.x
+ y17.x
- v.u1 =
y4.x4
+ y42.x.u2
+ y42.x.u1
+ y44.u1
+ y45.x2
+ y3.y43.u2
+ y3.y43.u1
+ y3.y46.x
+ y32.y4.x3
+ y32.y42.u2
+ y32.y43.x2
+ y32.y45.x
+ y33.y42.x2
+ y34.y4.x2
+ y35.y42.x
+ y36.y4.x
+ y1.x4
+ y1.y38
+ y1.y26.y32
+ y12.x.u1
+ y12.y3.x3
+ y13.x3
+ y13.y3.u1
+ y14.u1
+ y19
- y2.r1 =
y2.y33.u1
+ y23.y3.u1
- y1.r1 =
y1.x4
+ y1.y3.x.u1
+ y1.y38
+ y1.y26.y32
+ y12.x.u1
+ y12.y3.x3
+ y13.x3
+ y13.y3.u1
+ y14.u1
+ y14.y3.x2
+ y16.y3.x
+ y19
- u22 =
y42.r1
+ y42.x4
+ y43.x.u2
+ y46.x2
+ y3.y42.x.u2
+ y3.y43.x3
+ y32.x4
+ y32.y4.x.u2
+ y32.y43.u2
+ y32.y43.u1
+ y32.y44.v
+ y32.y44.x2
+ y32.y46.x
+ y33.y4.x3
+ y33.y42.u1
+ y33.y43.x2
+ y34.x3
+ y34.y4.u2
+ y34.y44.x
+ y35.y4.x2
+ y36.y42.x
+ y38.x
+ y1.y27.y32
+ y12.y3.x.u1
+ y13.x.u1
+ y13.y3.x3
+ y14.x3
+ y15.y3.x2
+ y17.y3.x
+ y42.r2
+ y12.r2
- u1.u2 =
x.r1
+ x5
+ y43.x.u2
+ y43.x.u1
+ y44.x3
+ y3.y4.r1
+ y3.y42.x.u2
+ y3.y42.x.u1
+ y3.y44.u2
+ y3.y44.u1
+ y32.r1
+ y32.x4
+ y32.y4.x.u2
+ y32.y4.x.u1
+ y32.y42.x3
+ y32.y43.u1
+ y32.y44.x2
+ y32.y46.x
+ y33.x.u2
+ y33.x.u1
+ y33.y42.u1
+ y33.y43.x2
+ y33.y45.x
+ y34.y44.x
+ y35.u2
+ y35.y4.x2
+ y36.y42.x
+ y22.y33.u1
+ y1.x2.u1
+ y12.x4
+ y12.y3.x.u1
+ y13.x.u1
+ y13.y3.x3
+ y15.u1
- u12 =
x5
+ y4.x2.u2
+ y4.x2.u1
+ y43.x.u1
+ y44.x3
+ y3.y4.x4
+ y3.y44.u1
+ y32.y4.x.u1
+ y32.y42.x3
+ y32.y43.u2
+ y32.y46.x
+ y33.y42.u1
+ y33.y43.x2
+ y34.y4.u2
+ y34.y44.x
+ y35.y4.x2
+ y36.y42.x
+ y38.x
+ y1.y27.y32
+ y12.y3.x.u1
+ y13.x.u1
+ y13.y3.x3
+ y15.y3.x2
+ y17.y3.x
+ y12.r2
- v.r1 =
y4.x3.u2
+ y4.x3.u1
+ y42.x.r1
+ y42.x5
+ y44.r1
+ y45.x.u1
+ y46.x3
+ y47.u1
+ y3.y42.x2.u2
+ y3.y44.x.u2
+ y3.y45.x3
+ y3.y46.u2
+ y3.y49.x
+ y32.y4.x2.u1
+ y32.y42.r1
+ y32.y42.x4
+ y32.y43.x.u2
+ y32.y45.u2
+ y32.y45.u1
+ y33.y4.r1
+ y33.y43.x3
+ y33.y44.u2
+ y33.y45.v
+ y33.y45.x2
+ y34.y4.x.u2
+ y34.y4.x.u1
+ y34.y42.x3
+ y34.y43.u2
+ y34.y44.x2
+ y35.y42.u1
+ y35.y43.v
+ y35.y43.x2
+ y36.y4.u2
+ y37.y4.v
+ y37.y4.x2
+ y38.y42.x
+ y1.x3.u1
+ y1.y3.x5
+ y1.y311
+ y1.y28.y33
+ y12.y3.x2.u1
+ y14.x4
+ y17.u1
+ y17.y3.x2
+ y19.y3.x
+ y111.y3
+ y44.r2
+ y14.r2
- u2.r1 =
x4.u2
+ y42.x3.u2
+ y43.x.r1
+ y43.x5
+ y44.x2.u2
+ y45.x4
+ y46.x.u2
+ y47.x3
+ y48.u1
+ y49.x2
+ y3.y4.x3.u2
+ y3.y43.x2.u2
+ y3.y410.x
+ y32.x3.u1
+ y32.y44.x.u2
+ y32.y45.x3
+ y32.y46.u1
+ y32.y47.v
+ y32.y47.x2
+ y32.y49.x
+ y33.x.r1
+ y33.x5
+ y33.y4.x2.u2
+ y33.y42.r1
+ y33.y45.u2
+ y33.y45.u1
+ y33.y46.x2
+ y34.y4.r1
+ y34.y4.x4
+ y34.y42.x.u2
+ y34.y42.x.u1
+ y34.y45.x2
+ y35.x4
+ y35.y43.u2
+ y35.y43.u1
+ y35.y46.x
+ y36.x.u2
+ y36.x.u1
+ y36.y4.x3
+ y36.y42.u1
+ y36.y43.v
+ y37.x3
+ y37.y42.x2
+ y37.y44.x
+ y38.y4.x2
+ y39.y42.x
+ y310.y4.x
+ y311.x
+ y1.y3.x3.u1
+ y1.y29.y33
+ y13.y3.x2.u1
+ y14.x2.u1
+ y14.y3.x4
+ y17.x3
+ y18.u1
+ y111.x
+ y4.v.r2
+ y3.y44.r2
+ y32.y43.r2
+ y33.y42.r2
+ y15.r2
- u1.r1 =
x4.u2
+ x4.u1
+ y4.x2.r1
+ y4.x6
+ y43.x.r1
+ y44.x2.u1
+ y45.x4
+ y46.x.u1
+ y3.y4.x3.u1
+ y3.y42.x.r1
+ y3.y42.x5
+ y3.y43.x2.u2
+ y3.y44.r1
+ y3.y44.x4
+ y3.y45.x.u2
+ y3.y45.x.u1
+ y3.y46.x3
+ y3.y47.u1
+ y3.y48.x2
+ y32.x3.u2
+ y32.y43.r1
+ y32.y46.u2
+ y32.y46.u1
+ y32.y49.x
+ y33.x.r1
+ y33.y4.x2.u2
+ y33.y4.x2.u1
+ y33.y42.r1
+ y33.y43.x.u2
+ y33.y48.x
+ y34.x2.u2
+ y34.y44.u1
+ y34.y45.x2
+ y35.r1
+ y35.y4.x.u2
+ y35.y42.x3
+ y35.y43.u1
+ y36.x.u1
+ y36.y4.x3
+ y36.y42.u2
+ y36.y42.u1
+ y37.x3
+ y37.y4.u2
+ y37.y42.x2
+ y38.u2
+ y39.x2
+ y39.y42.x
+ y310.y4.x
+ y22.y36.u1
+ y1.x6
+ y1.y312
+ y1.y210.y32
+ y12.x3.u1
+ y13.x5
+ y13.y3.x2.u1
+ y15.y3.x.u1
+ y16.x.u1
+ y16.y3.x3
+ y18.u1
+ y19.x2
+ y113
+ y43.x.r2
+ y3.y44.r2
+ y32.y43.r2
+ y12.y3.x.r2
- r12 =
x8
+ y42.x3.r1
+ y42.x7
+ y46.x5
+ y48.x4
+ y49.x.u2
+ y49.x.u1
+ y3.y42.x4.u2
+ y3.y43.x6
+ y3.y44.x3.u2
+ y3.y45.x5
+ y3.y47.r1
+ y3.y47.x4
+ y3.y49.x3
+ y3.y410.u2
+ y3.y410.u1
+ y32.x7
+ y32.y4.x4.u1
+ y32.y42.x2.r1
+ y32.y43.x3.u1
+ y32.y44.x5
+ y32.y45.x2.u1
+ y32.y46.r1
+ y32.y46.x4
+ y32.y47.x.u2
+ y32.y47.x.u1
+ y32.y49.u2
+ y32.y49.u1
+ y32.y410.x2
+ y32.y412.x
+ y33.y43.x5
+ y33.y44.x2.u2
+ y33.y44.x2.u1
+ y33.y45.r1
+ y33.y46.x.u2
+ y33.y47.x3
+ y33.y48.u2
+ y33.y48.u1
+ y33.y49.v
+ y34.x6
+ y34.y42.x5
+ y34.y44.r1
+ y34.y44.x4
+ y34.y45.x.u2
+ y34.y45.x.u1
+ y34.y46.x3
+ y34.y48.v
+ y34.y48.x2
+ y34.y410.x
+ y35.y44.x.u1
+ y35.y45.x3
+ y35.y46.u1
+ y35.y47.v
+ y35.y49.x
+ y36.y4.x2.u1
+ y36.y42.r1
+ y36.y42.x4
+ y36.y43.x.u2
+ y36.y46.v
+ y36.y48.x
+ y37.y45.v
+ y38.x4
+ y38.y4.x.u2
+ y38.y42.x3
+ y38.y43.u2
+ y38.y43.u1
+ y38.y44.x2
+ y39.y4.x3
+ y39.y42.u1
+ y39.y43.x2
+ y39.y45.x
+ y310.y4.u2
+ y311.y4.x2
+ y311.y43.x
+ y312.x2
+ y312.y42.x
+ y314.x
+ y1.y213.y32
+ y12.x7
+ y12.y3.x4.u1
+ y15.x3.u1
+ y16.x5
+ y17.x2.u1
+ y17.y3.x4
+ y19.y3.x3
+ y110.y3.u1
+ y111.u1
+ y112.x2
+ y114.x
+ y42.x3.r2
+ y43.u2.r2
+ y43.u1.r2
+ y46.x.r2
+ y3.y43.x2.r2
+ y3.y45.x.r2
+ y32.y42.v.r2
+ y32.y44.x.r2
+ y32.y46.r2
+ y33.y45.r2
+ y34.y42.x.r2
+ y36.y42.r2
+ y12.x3.r2
+ y13.u1.r2
+ y15.y3.x.r2
+ y16.x.r2
+ y17.y3.r2
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y12.y2 =
0
- y12.y32 =
y14
- y1.y2.y34 =
y1.y23.y32
- y1.y2.u1 =
0
- y1.y32.u1 =
y13.u1
This cohomology ring was obtained from a calculation
out to degree 17. The cohomology ring approximation
is stable from degree 16 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r2
in degree 8
- h2 =
x2
+ y44
+ y3.y4.x
+ y32.x
+ y32.y42
+ y34
+ y22.y32
+ y24
in degree 4
- h3 =
y42.x2
+ y3.y4.x2
+ y3.y43.x
+ y32.x2
+ y32.y44
+ y34.x
+ y34.y42
+ y22.y34
+ y24.y32
in degree 6
- h4 =
y4
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 8, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y2
in degree 1
-
y1
in degree 1
-
x
in degree 2
-
y32
in degree 2
-
y2.y3
in degree 2
-
y22
in degree 2
-
y1.y3
in degree 2
-
y1.y2
in degree 2
-
y3.x
in degree 3
-
y33
in degree 3
-
y2.y32
in degree 3
-
y22.y3
in degree 3
-
y23
in degree 3
-
y1.x
in degree 3
-
y1.y32
in degree 3
-
y1.y2.y3
in degree 3
-
y1.y22
in degree 3
-
v
in degree 4
-
y32.x
in degree 4
-
y34
in degree 4
-
y2.y33
in degree 4
-
y22.y32
in degree 4
-
y23.y3
in degree 4
-
y24
in degree 4
-
y1.y3.x
in degree 4
-
y1.y33
in degree 4
-
y1.y2.y32
in degree 4
-
y1.y22.y3
in degree 4
-
y1.y23
in degree 4
-
u2
in degree 5
-
u1
in degree 5
-
y3.v
in degree 5
-
y33.x
in degree 5
-
y35
in degree 5
-
y22.y33
in degree 5
-
y23.y32
in degree 5
-
y24.y3
in degree 5
-
y25
in degree 5
-
y1.y34
in degree 5
-
y1.y2.y33
in degree 5
-
y1.y22.y32
in degree 5
-
y1.y23.y3
in degree 5
-
y1.y24
in degree 5
-
y3.u2
in degree 6
-
y3.u1
in degree 6
-
y32.v
in degree 6
-
y34.x
in degree 6
-
y2.u1
in degree 6
-
y23.y33
in degree 6
-
y24.y32
in degree 6
-
y25.y3
in degree 6
-
y26
in degree 6
-
y1.u1
in degree 6
-
y1.y35
in degree 6
-
y1.y22.y33
in degree 6
-
y1.y23.y32
in degree 6
-
y1.y24.y3
in degree 6
-
x.u2
in degree 7
-
x.u1
in degree 7
-
y32.u2
in degree 7
-
y32.u1
in degree 7
-
y33.v
in degree 7
-
y35.x
in degree 7
-
y2.y3.u1
in degree 7
-
y22.u1
in degree 7
-
y24.y33
in degree 7
-
y25.y32
in degree 7
-
y26.y3
in degree 7
-
y1.y3.u1
in degree 7
-
y1.y23.y33
in degree 7
-
y1.y24.y32
in degree 7
-
r
in degree 8
-
y3.x.u2
in degree 8
-
y3.x.u1
in degree 8
-
y33.u2
in degree 8
-
y33.u1
in degree 8
-
y2.y32.u1
in degree 8
-
y22.y3.u1
in degree 8
-
y23.u1
in degree 8
-
y25.y33
in degree 8
-
y26.y32
in degree 8
-
y1.x.u1
in degree 8
-
y1.y24.y33
in degree 8
-
y3.r
in degree 9
-
y32.x.u2
in degree 9
-
y32.x.u1
in degree 9
-
y34.u2
in degree 9
-
y34.u1
in degree 9
-
y2.y33.u1
in degree 9
-
y22.y32.u1
in degree 9
-
y23.y3.u1
in degree 9
-
y24.u1
in degree 9
-
y26.y33
in degree 9
-
y1.y3.x.u1
in degree 9
-
x.r
in degree 10
-
y32.r
in degree 10
-
y33.x.u2
in degree 10
-
y33.x.u1
in degree 10
-
y35.u2
in degree 10
-
y35.u1
in degree 10
-
y22.y33.u1
in degree 10
-
y23.y32.u1
in degree 10
-
y24.y3.u1
in degree 10
-
y25.u1
in degree 10
-
y3.x.r
in degree 11
-
y33.r
in degree 11
-
y34.x.u2
in degree 11
-
y34.x.u1
in degree 11
-
y23.y33.u1
in degree 11
-
y24.y32.u1
in degree 11
-
y25.y3.u1
in degree 11
-
y26.u1
in degree 11
-
y32.x.r
in degree 12
-
y34.r
in degree 12
-
y35.x.u2
in degree 12
-
y35.x.u1
in degree 12
-
y24.y33.u1
in degree 12
-
y25.y32.u1
in degree 12
-
y26.y3.u1
in degree 12
-
y33.x.r
in degree 13
-
y35.r
in degree 13
-
y25.y33.u1
in degree 13
-
y26.y32.u1
in degree 13
-
y34.x.r
in degree 14
-
y26.y33.u1
in degree 14
-
y35.x.r
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y2
in degree 1
-
y2.y3
in degree 2
-
y22
in degree 2
-
y1.y2
in degree 2
-
y2.y32
in degree 3
-
y22.y3
in degree 3
-
y23
in degree 3
-
y1.y32
+ y1.h2
in degree 3
-
y1.y2.y3
in degree 3
-
y1.y22
in degree 3
-
y2.y33
in degree 4
-
y22.y32
in degree 4
-
y23.y3
in degree 4
-
y24
in degree 4
-
y1.y33
+ y1.y3.h2
in degree 4
-
y1.y2.y32
in degree 4
-
y1.y22.y3
in degree 4
-
y1.y23
in degree 4
-
y22.y33
in degree 5
-
y23.y32
in degree 5
-
y24.y3
in degree 5
-
y25
in degree 5
-
y1.y34
+ y1.y32.h2
in degree 5
-
y1.y2.y33
in degree 5
-
y1.y22.y32
in degree 5
-
y1.y23.y3
in degree 5
-
y1.y24
in degree 5
-
y2.u1
in degree 6
-
y23.y33
in degree 6
-
y24.y32
in degree 6
-
y25.y3
in degree 6
-
y26
in degree 6
-
y1.y35
+ y1.y33.h2
in degree 6
-
y1.y22.y33
in degree 6
-
y1.y23.y32
in degree 6
-
y1.y24.y3
in degree 6
-
y1.y3.h4
in degree 6
-
y2.y3.u1
in degree 7
-
y22.u1
in degree 7
-
y24.y33
in degree 7
-
y25.y32
in degree 7
-
y26.y3
in degree 7
-
y1.y23.y33
in degree 7
-
y1.y24.y32
in degree 7
-
y1.h6
in degree 7
-
y2.y32.u1
in degree 8
-
y22.y3.u1
in degree 8
-
y23.u1
in degree 8
-
y25.y33
in degree 8
-
y26.y32
in degree 8
-
y1.y24.y33
in degree 8
-
y1.y3.x.h4
in degree 8
-
y32.x.u1
+ y1.y3.x.u1
+ y3.x.u1.h
+ y1.x.u1.h
+ v.h5
in degree 9
-
y2.y33.u1
in degree 9
-
y22.y32.u1
in degree 9
-
y23.y3.u1
in degree 9
-
y24.u1
in degree 9
-
y26.y33
in degree 9
-
y1.x.h6
in degree 9
-
y33.x.u1
+ y1.y32.x.u1
+ y32.x.u1.h
+ y1.y3.x.u1.h
+ y3.v.h5
in degree 10
-
y22.y33.u1
in degree 10
-
y23.y32.u1
in degree 10
-
y24.y3.u1
in degree 10
-
y25.u1
in degree 10
-
y34.x.u1
+ y1.y33.x.u1
+ y33.x.u1.h
+ y1.y32.x.u1.h
+ y32.v.h5
in degree 11
-
y23.y33.u1
in degree 11
-
y24.y32.u1
in degree 11
-
y25.y3.u1
in degree 11
-
y26.u1
in degree 11
-
y1.y3.u1.h4
in degree 11
-
y35.x.u1
+ y1.y34.x.u1
+ y34.x.u1.h
+ y1.y33.x.u1.h
+ y33.v.h5
in degree 12
-
y24.y33.u1
in degree 12
-
y25.y32.u1
in degree 12
-
y26.y3.u1
in degree 12
-
y1.u1.h6
in degree 12
-
y25.y33.u1
in degree 13
-
y26.y32.u1
in degree 13
-
y1.y3.x.u1.h4
in degree 13
-
y26.y33.u1
in degree 14
-
y1.x.u1.h6
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.y2
in degree 2
-
y1.y32
+ y13
in degree 3
-
y1.y2.y3
in degree 3
-
y1.y22
in degree 3
-
y1.y33
+ y13.y3
in degree 4
-
y1.y2.y32
in degree 4
-
y1.y22.y3
in degree 4
-
y1.y23
in degree 4
-
y1.y34
+ y13.y32
in degree 5
-
y1.y2.y33
in degree 5
-
y1.y22.y32
in degree 5
-
y1.y23.y3
in degree 5
-
y1.y24
in degree 5
-
y1.y35
+ y13.y33
in degree 6
-
y1.y22.y33
in degree 6
-
y1.y23.y32
in degree 6
-
y1.y24.y3
in degree 6
-
y1.y23.y33
in degree 7
-
y1.y24.y32
in degree 7
-
y1.y24.y33
in degree 8
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- y4 restricts to
0
- x restricts to
0
- v restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- r1 restricts to
0
- r2 restricts to
y8
Restriction to special subgroup number 2, which is 8gp5
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
y3
- y4 restricts to
0
- x restricts to
0
- v restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- r1 restricts to
0
- r2 restricts to
y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 3, which is 8gp5
- y1 restricts to
y3
- y2 restricts to
0
- y3 restricts to
y3
- y4 restricts to
y3
- x restricts to
y2.y3
+ y22
- v restricts to
0
- u1 restricts to
y35
+ y23.y32
+ y25
+ y12.y33
+ y14.y3
- u2 restricts to
y22.y33
+ y24.y3
- r1 restricts to
y2.y37
+ y28
- r2 restricts to
y38
+ y2.y37
+ y22.y36
+ y23.y35
+ y24.y34
+ y25.y33
+ y26.y32
+ y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y3
- y4 restricts to
y2
- x restricts to
y42
+ y2.y4
- v restricts to
y2.y43
+ y2.y32.y4
+ y22.y42
+ y22.y3.y4
+ y1.y23
+ y12.y22
- u1 restricts to
y45
+ y34.y4
+ y22.y43
+ y22.y32.y4
+ y1.y22.y42
+ y1.y22.y32
+ y1.y23.y4
+ y1.y23.y3
+ y12.y2.y42
+ y12.y2.y32
+ y12.y22.y4
+ y12.y22.y3
- u2 restricts to
y3.y44
+ y32.y43
+ y34.y4
+ y2.y33.y4
+ y22.y43
+ y22.y3.y42
+ y23.y3.y4
+ y24.y4
+ y1.y22.y42
+ y1.y23.y4
+ y1.y23.y3
+ y1.y24
+ y12.y2.y42
+ y12.y22.y4
+ y12.y22.y3
+ y14.y2
- r1 restricts to
y48
+ y3.y47
+ y32.y46
+ y34.y44
+ y36.y42
+ y37.y4
+ y2.y32.y45
+ y2.y35.y42
+ y22.y46
+ y22.y3.y45
+ y22.y34.y42
+ y22.y35.y4
+ y23.y3.y44
+ y23.y32.y43
+ y23.y33.y42
+ y24.y44
+ y25.y43
+ y25.y3.y42
+ y25.y32.y4
+ y26.y42
+ y26.y3.y4
+ y27.y4
+ y1.y22.y45
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y23.y32.y42
+ y1.y23.y34
+ y1.y24.y43
+ y1.y24.y3.y42
+ y1.y24.y33
+ y1.y25.y42
+ y1.y25.y32
+ y1.y26.y4
+ y1.y26.y3
+ y1.y27
+ y12.y2.y45
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y25.y3
+ y12.y26
+ y13.y25
+ y14.y2.y43
+ y14.y2.y32.y4
+ y14.y2.y33
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y23.y4
+ y14.y24
+ y15.y23
+ y16.y22
- r2 restricts to
y3.y47
+ y34.y44
+ y37.y4
+ y2.y32.y45
+ y2.y33.y44
+ y2.y34.y43
+ y2.y35.y42
+ y2.y36.y4
+ y22.y33.y43
+ y23.y45
+ y23.y32.y43
+ y23.y33.y42
+ y25.y3.y42
+ y25.y32.y4
+ y26.y3.y4
+ y27.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y45
+ y1.y23.y44
+ y1.y24.y43
+ y1.y24.y33
+ y1.y25.y42
+ y1.y25.y32
+ y1.y26.y3
+ y1.y27
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y45
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y24.y42
+ y12.y25.y3
+ y13.y25
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y43
+ y14.y2.y3.y42
+ y14.y2.y33
+ y14.y22.y32
+ y14.y24
+ y15.y23
+ y16.y22
+ y18
(1 + 3t + 5t2
+ 6t3 + 6t4 + 6t5
+ 5t6 + 4t7 + 3t8
+ 2t9 + 2t10 + 2t11
+ 2t12 + t13) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128