Small group number 2264 of order 128
G is the group 128gp2264
G has 5 minimal generators, rank 5 and exponent 4.
The centre has rank 2.
There are 5 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
4, 4, 4, 4, 5.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 11 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- y4 in degree 1
- y5 in degree 1
- w in degree 3
- v1 in degree 4
- v2 in degree 4
- v3 in degree 4, a regular element
- v4 in degree 4, a regular element
- t in degree 6
There are 22 minimal relations:
- y4.y5 =
y1.y5
+ y1.y3
- y3.y5 =
y2.y5
+ y1.y2
- y1.y3.y4 =
y1.y2.y4
+ y12.y2
- y1.y2.y5 =
y1.y2.y3
+ y12.y2
- y5.v2 =
y52.w
+ y22.y53
+ y1.y5.w
+ y1.y54
+ y12.y53
+ y13.y2.y3
- y5.v1 =
y52.w
+ y2.y5.w
+ y1.y5.w
+ y1.y2.w
+ y12.y53
+ y13.y52
+ y13.y2.y3
+ y13.y22
+ y14.y2
- y4.v2 =
y42.w
+ y3.v2
+ y3.y4.w
+ y32.w
+ y2.v1
+ y23.y52
+ y1.y5.w
+ y12.y53
+ y13.y52
- y1.v2 =
y1.y5.w
+ y1.y4.w
+ y1.y23.y3
+ y12.y53
+ y13.y52
+ y13.y2.y3
+ y13.y22
- y1.v1 =
y1.y5.w
+ y1.y4.w
+ y13.y52
+ y13.y22
+ y14.y5
+ y14.y3
+ y14.y2
- y1.y3.w =
y13.y2.y3
- w2 =
y3.y42.w
+ y33.w
+ y2.y42.w
+ y2.y3.y4.w
+ y23.w
+ y1.y52.w
+ y1.y22.w
+ y12.y54
+ y14.y22
+ y15.y5
+ y15.y3
+ y52.v4
+ y42.v3
+ y32.v3
+ y22.v4
+ y22.v3
- w.v2 =
y3.y43.w
+ y34.w
+ y2.t
+ y2.y43.w
+ y2.y32.v2
+ y22.y52.w
+ y22.y55
+ y22.y42.w
+ y22.y3.v1
+ y22.y32.w
+ y23.v2
+ y23.v1
+ y23.y54
+ y23.y4.w
+ y23.y3.w
+ y24.w
+ y24.y53
+ y1.y23.w
+ y12.y55
+ y12.y22.w
+ y12.y25
+ y13.y54
+ y13.y24
+ y14.y23
+ y15.y52
+ y16.y5
+ y16.y3
+ y53.v4
+ y43.v3
+ y33.v3
+ y2.y52.v3
+ y2.y3.y4.v4
+ y22.y5.v3
+ y22.y4.v4
+ y22.y4.v3
+ y23.v3
+ y1.y52.v4
+ y1.y2.y4.v4
+ y1.y2.y3.v4
+ y1.y2.y3.v3
+ y1.y22.v3
+ y12.y5.v3
+ y12.y3.v3
+ y12.y2.v3
- w.v1 =
y4.t
+ y3.t
+ y3.y43.w
+ y32.y42.w
+ y34.w
+ y2.y43.w
+ y2.y3.y4.v1
+ y2.y3.y42.w
+ y2.y32.y4.w
+ y2.y33.w
+ y22.y55
+ y22.y4.v1
+ y22.y42.w
+ y22.y3.v1
+ y22.y32.w
+ y23.v1
+ y23.y54
+ y23.y4.w
+ y23.y3.w
+ y24.y53
+ y1.y53.w
+ y1.y25.y3
+ y12.y52.w
+ y12.y25
+ y13.y4.w
+ y14.y23
+ y15.y2.y3
+ y15.y22
+ y16.y2
+ y53.v4
+ y3.y42.v4
+ y32.y4.v4
+ y2.y52.v4
+ y2.y52.v3
+ y2.y32.v4
+ y2.y32.v3
+ y22.y5.v3
+ y22.y4.v3
+ y22.y3.v3
+ y1.y52.v4
+ y1.y52.v3
+ y1.y42.v4
+ y1.y2.y4.v4
+ y1.y2.y4.v3
+ y1.y22.v3
+ y12.y5.v3
+ y12.y3.v3
+ y12.y2.v4
+ y12.y2.v3
- y5.t =
y2.y56
+ y22.y55
+ y23.y54
+ y1.y53.w
+ y1.y56
+ y1.y23.w
+ y1.y25.y3
+ y12.y52.w
+ y12.y55
+ y13.y5.w
+ y13.y24
+ y14.y53
+ y15.y52
+ y15.y22
+ y53.v3
+ y2.y52.v4
+ y2.y52.v3
+ y1.y2.y4.v4
+ y1.y2.y4.v3
+ y1.y22.v3
+ y12.y5.v4
+ y12.y5.v3
+ y12.y3.v4
+ y12.y3.v3
+ y12.y2.v4
+ y12.y2.v3
- y1.t =
y1.y23.w
+ y1.y25.y3
+ y12.y52.w
+ y12.y55
+ y13.y5.w
+ y13.y54
+ y13.y24
+ y14.w
+ y14.y23
+ y15.y52
+ y16.y5
+ y16.y3
+ y16.y2
+ y1.y52.v3
+ y1.y42.v3
+ y1.y2.y4.v4
+ y1.y2.y4.v3
+ y1.y2.y3.v4
+ y1.y22.v3
+ y12.y4.v4
+ y12.y3.v3
- v22 =
y3.y44.w
+ y33.y42.w
+ y35.w
+ y2.y44.w
+ y2.y3.y43.w
+ y2.y33.v2
+ y2.y33.y4.w
+ y2.y34.w
+ y22.y3.y42.w
+ y22.y32.v2
+ y22.y32.v1
+ y22.y32.y4.w
+ y23.y3.v1
+ y24.y54
+ y1.y54.w
+ y1.y26.y3
+ y13.y52.w
+ y14.y2.w
+ y15.y53
+ y16.y2.y3
+ y17.y5
+ y17.y3
+ y54.v4
+ y44.v3
+ y32.y42.v3
+ y34.v3
+ y22.y52.v4
+ y22.y42.v4
+ y22.y32.v3
+ y12.y52.v4
+ y12.y52.v3
- v1.v2 =
y42.t
+ y3.y4.t
+ y3.y44.w
+ y32.t
+ y32.y43.w
+ y33.y42.w
+ y34.v2
+ y2.y44.w
+ y2.y3.y42.v1
+ y2.y32.y4.v1
+ y2.y32.y42.w
+ y2.y33.v1
+ y2.y33.y4.w
+ y22.y53.w
+ y22.y42.v1
+ y22.y3.y42.w
+ y22.y32.v2
+ y22.y32.v1
+ y22.y32.y4.w
+ y22.y33.w
+ y23.y52.w
+ y23.y55
+ y23.y4.v1
+ y23.y42.w
+ y23.y3.y4.w
+ y23.y32.w
+ y24.y54
+ y25.y53
+ y12.y53.w
+ y12.y56
+ y12.y23.w
+ y13.y52.w
+ y13.y42.w
+ y13.y22.w
+ y14.y2.w
+ y14.y24
+ y16.y52
+ y16.y2.y3
+ y17.y2
+ y54.v4
+ y3.y43.v4
+ y32.y42.v4
+ y33.y4.v4
+ y2.y53.v4
+ y2.y43.v3
+ y2.y3.y42.v3
+ y2.y32.y4.v4
+ y2.y33.v3
+ y22.y52.v4
+ y22.y52.v3
+ y22.y42.v3
+ y22.y3.y4.v3
+ y22.y32.v3
+ y23.y5.v3
+ y1.y43.v4
+ y1.y22.y3.v3
+ y1.y23.v3
+ y12.y52.v4
+ y12.y2.y3.v3
+ y12.y22.v4
+ y12.y22.v3
- v12 =
y3.y44.w
+ y32.y42.v1
+ y33.y4.v1
+ y33.y42.w
+ y34.y4.w
+ y35.w
+ y2.y44.w
+ y2.y3.y42.v1
+ y2.y32.y4.v1
+ y2.y32.y42.w
+ y2.y34.w
+ y1.y54.w
+ y12.y56
+ y13.y52.w
+ y14.y2.w
+ y14.y24
+ y15.y53
+ y16.y52
+ y16.y22
+ y17.y5
+ y17.y3
+ y54.v4
+ y44.v3
+ y34.v4
+ y12.y52.v4
+ y12.y52.v3
- w.t =
y3.y42.t
+ y33.t
+ y2.y55.w
+ y2.y42.t
+ y2.y32.y42.v1
+ y2.y32.y43.w
+ y2.y33.y4.v1
+ y2.y34.v2
+ y2.y34.y4.w
+ y2.y35.w
+ y22.y54.w
+ y22.y4.t
+ y22.y3.t
+ y22.y32.y4.v1
+ y22.y32.y42.w
+ y22.y33.y4.w
+ y22.y34.w
+ y23.y53.w
+ y23.y42.v1
+ y23.y43.w
+ y23.y3.y42.w
+ y23.y32.v2
+ y23.y32.v1
+ y23.y32.y4.w
+ y23.y33.w
+ y24.y3.y4.w
+ y25.v1
+ y26.w
+ y1.y55.w
+ y12.y24.w
+ y12.y27
+ y13.y53.w
+ y13.y56
+ y13.y23.w
+ y14.y55
+ y14.y22.w
+ y15.y5.w
+ y15.y54
+ y16.y53
+ y16.y23
+ y17.y52
+ y18.y5
+ y18.y3
+ y52.w.v3
+ y4.v1.v3
+ y3.v1.v3
+ y3.y4.w.v4
+ y3.y44.v3
+ y32.y43.v4
+ y33.y42.v3
+ y34.y4.v4
+ y34.y4.v3
+ y35.v3
+ y2.v2.v4
+ y2.v2.v3
+ y2.y5.w.v3
+ y2.y4.w.v4
+ y2.y4.w.v3
+ y2.y44.v3
+ y2.y3.y43.v4
+ y2.y33.y4.v4
+ y2.y33.y4.v3
+ y2.y34.v4
+ y22.w.v3
+ y22.y43.v3
+ y22.y3.y42.v3
+ y22.y33.v4
+ y22.y33.v3
+ y23.y52.v4
+ y23.y52.v3
+ y23.y42.v4
+ y23.y42.v3
+ y23.y32.v3
+ y24.y4.v4
+ y24.y3.v4
+ y25.v4
+ y25.v3
+ y1.y5.w.v3
+ y1.y54.v4
+ y1.y4.w.v4
+ y1.y2.w.v3
+ y1.y23.y3.v4
+ y1.y24.v4
+ y1.y24.v3
+ y12.y53.v4
+ y12.y23.v4
+ y13.y52.v4
+ y13.y42.v3
+ y13.y2.y3.v3
+ y13.y22.v4
+ y14.y2.v4
- v2.t =
y3.y43.t
+ y34.t
+ y2.y56.w
+ y2.y43.t
+ y2.y3.y42.t
+ y2.y32.y43.v1
+ y2.y32.y44.w
+ y2.y33.t
+ y2.y33.y42.v1
+ y2.y33.y43.w
+ y2.y34.y4.v1
+ y2.y35.y4.w
+ y22.y55.w
+ y22.y32.y43.w
+ y22.y33.y4.v1
+ y22.y34.v2
+ y22.y34.v1
+ y22.y34.y4.w
+ y22.y35.w
+ y23.y54.w
+ y23.y57
+ y23.y4.t
+ y23.y43.v1
+ y23.y44.w
+ y23.y3.t
+ y23.y3.y43.w
+ y23.y32.y4.v1
+ y23.y32.y42.w
+ y23.y33.v1
+ y23.y33.y4.w
+ y24.t
+ y24.y56
+ y24.y42.v1
+ y24.y43.w
+ y24.y3.y42.w
+ y24.y32.v1
+ y24.y33.w
+ y25.y55
+ y25.y4.v1
+ y25.y42.w
+ y25.y3.v1
+ y25.y3.y4.w
+ y25.y32.w
+ y26.v2
+ y27.w
+ y1.y56.w
+ y1.y26.w
+ y1.y28.y3
+ y12.y58
+ y13.y54.w
+ y13.y57
+ y13.y24.w
+ y13.y27
+ y14.y53.w
+ y14.y56
+ y14.y23.w
+ y15.y55
+ y16.y5.w
+ y17.y53
+ y18.y22
+ y19.y5
+ y19.y3
+ y53.w.v3
+ y42.v1.v3
+ y3.y4.v1.v3
+ y3.y42.w.v4
+ y3.y45.v3
+ y32.v2.v4
+ y32.v1.v3
+ y32.y4.w.v4
+ y32.y44.v4
+ y33.w.v4
+ y35.y4.v4
+ y35.y4.v3
+ y36.v3
+ y2.y52.w.v4
+ y2.y52.w.v3
+ y2.y42.w.v3
+ y2.y45.v3
+ y2.y3.v2.v4
+ y2.y3.v2.v3
+ y2.y3.v1.v4
+ y2.y3.y4.w.v4
+ y2.y3.y4.w.v3
+ y2.y3.y44.v4
+ y2.y3.y44.v3
+ y2.y32.w.v4
+ y2.y32.y43.v4
+ y2.y32.y43.v3
+ y2.y33.y42.v4
+ y2.y33.y42.v3
+ y2.y35.v4
+ y2.y35.v3
+ y22.v2.v3
+ y22.v1.v4
+ y22.v1.v3
+ y22.y54.v3
+ y22.y3.y43.v4
+ y22.y32.y42.v4
+ y22.y33.y4.v4
+ y22.y33.y4.v3
+ y22.y34.v3
+ y23.y53.v4
+ y23.y53.v3
+ y23.y43.v4
+ y23.y3.y42.v3
+ y23.y32.y4.v4
+ y23.y32.y4.v3
+ y23.y33.v4
+ y24.y42.v3
+ y24.y3.y4.v3
+ y24.y32.v3
+ y25.y4.v4
+ y25.y3.v3
+ y26.v3
+ y1.y52.w.v3
+ y1.y55.v4
+ y1.y55.v3
+ y1.y42.w.v4
+ y1.y24.y3.v4
+ y1.y24.y3.v3
+ y12.y5.w.v4
+ y12.y54.v3
+ y12.y2.w.v4
+ y12.y24.v4
+ y12.y24.v3
+ y13.y53.v4
+ y13.y43.v3
+ y13.y23.v4
+ y14.y22.v3
+ y15.y5.v3
+ y15.y3.v3
+ y15.y2.v4
- v1.t =
y3.y43.t
+ y33.y4.t
+ y33.y44.w
+ y34.t
+ y36.v2
+ y37.w
+ y2.y56.w
+ y2.y43.t
+ y2.y32.y43.v1
+ y2.y33.t
+ y2.y33.y43.w
+ y2.y34.y42.w
+ y2.y35.v1
+ y2.y35.y4.w
+ y2.y36.w
+ y22.y42.t
+ y22.y32.t
+ y22.y32.y42.v1
+ y22.y33.y4.v1
+ y22.y34.v2
+ y22.y34.v1
+ y22.y35.w
+ y23.y4.t
+ y23.y43.v1
+ y23.y44.w
+ y23.y3.t
+ y23.y3.y42.v1
+ y23.y3.y43.w
+ y23.y33.v1
+ y23.y34.w
+ y24.y53.w
+ y24.y43.w
+ y24.y3.y4.v1
+ y24.y33.w
+ y26.v1
+ y26.y4.w
+ y26.y3.w
+ y1.y56.w
+ y12.y55.w
+ y12.y28
+ y14.y53.w
+ y14.y26
+ y15.y52.w
+ y15.y55
+ y15.y25
+ y16.y54
+ y16.y2.w
+ y18.y52
+ y18.y2.y3
+ y19.y5
+ y19.y3
+ y53.w.v3
+ y43.w.v3
+ y3.y4.v1.v4
+ y3.y42.w.v3
+ y3.y45.v3
+ y32.v2.v4
+ y32.v2.v3
+ y32.y4.w.v4
+ y32.y44.v4
+ y32.y44.v3
+ y33.w.v3
+ y33.y43.v3
+ y34.y42.v4
+ y35.y4.v4
+ y36.v3
+ y2.y52.w.v4
+ y2.y45.v3
+ y2.y3.y44.v4
+ y2.y33.y42.v4
+ y2.y33.y42.v3
+ y2.y34.y4.v3
+ y2.y35.v4
+ y22.v1.v3
+ y22.y5.w.v3
+ y22.y44.v3
+ y22.y34.v4
+ y22.y34.v3
+ y23.y43.v4
+ y23.y43.v3
+ y23.y33.v4
+ y23.y33.v3
+ y24.y52.v4
+ y24.y52.v3
+ y24.y42.v3
+ y24.y32.v4
+ y25.y4.v3
+ y25.y3.v3
+ y1.y52.w.v3
+ y1.y55.v4
+ y1.y42.w.v4
+ y1.y22.w.v3
+ y1.y24.y3.v3
+ y12.y5.w.v4
+ y12.y5.w.v3
+ y12.y54.v3
+ y12.y2.w.v4
+ y13.y43.v3
+ y14.y52.v3
+ y14.y2.y3.v4
+ y14.y22.v3
+ y15.y5.v4
+ y15.y5.v3
+ y15.y3.v4
+ y15.y3.v3
+ y15.y2.v3
- t2 =
y33.y43.t
+ y34.y45.w
+ y35.y4.t
+ y35.y44.w
+ y37.y42.w
+ y2.y33.y42.t
+ y2.y34.y4.t
+ y2.y34.y43.v1
+ y2.y34.y44.w
+ y2.y35.y42.v1
+ y2.y35.y43.w
+ y2.y37.v2
+ y2.y37.y4.w
+ y22.y510
+ y22.y3.y43.t
+ y22.y32.y42.t
+ y22.y32.y45.w
+ y22.y33.y43.v1
+ y22.y34.y43.w
+ y22.y35.y42.w
+ y22.y36.v2
+ y22.y36.v1
+ y23.y32.y4.t
+ y23.y32.y43.v1
+ y23.y33.y42.v1
+ y23.y34.y4.v1
+ y23.y34.y42.w
+ y23.y35.v2
+ y23.y35.v1
+ y24.y58
+ y24.y3.y4.t
+ y24.y3.y43.v1
+ y24.y3.y44.w
+ y24.y33.y4.v1
+ y24.y33.y42.w
+ y24.y34.v2
+ y24.y34.v1
+ y24.y35.w
+ y25.y44.w
+ y25.y3.y43.w
+ y25.y32.y4.v1
+ y25.y33.v1
+ y25.y33.y4.w
+ y26.y56
+ y26.y3.y4.v1
+ y26.y33.w
+ y27.y32.w
+ y29.w
+ y1.y28.w
+ y12.y510
+ y12.y27.w
+ y13.y56.w
+ y13.y26.w
+ y14.y25.w
+ y15.y54.w
+ y16.y56
+ y16.y23.w
+ y17.y52.w
+ y17.y55
+ y17.y22.w
+ y18.y2.w
+ y18.y24
+ y19.y53
+ y110.y52
+ y110.y22
+ y111.y5
+ y111.y3
+ y32.y42.v1.v3
+ y33.y4.v1.v3
+ y33.y42.w.v3
+ y34.y4.w.v3
+ y34.y44.v4
+ y34.y44.v3
+ y35.w.v4
+ y35.w.v3
+ y35.y43.v3
+ y36.y42.v4
+ y37.y4.v3
+ y2.y3.y42.v1.v3
+ y2.y3.y43.w.v3
+ y2.y32.y4.v1.v3
+ y2.y32.y45.v3
+ y2.y33.v2.v4
+ y2.y33.v2.v3
+ y2.y33.y4.w.v4
+ y2.y33.y44.v3
+ y2.y34.w.v4
+ y2.y34.y43.v4
+ y2.y35.y42.v3
+ y2.y36.y4.v4
+ y2.y37.v3
+ y22.y3.y42.w.v4
+ y22.y3.y42.w.v3
+ y22.y3.y45.v3
+ y22.y32.v2.v4
+ y22.y32.v2.v3
+ y22.y32.v1.v4
+ y22.y32.v1.v3
+ y22.y32.y4.w.v4
+ y22.y32.y4.w.v3
+ y22.y32.y44.v4
+ y22.y32.y44.v3
+ y22.y33.y43.v4
+ y22.y34.y42.v4
+ y22.y36.v3
+ y23.y42.w.v4
+ y23.y3.v1.v4
+ y23.y3.v1.v3
+ y23.y3.y44.v3
+ y23.y32.w.v3
+ y23.y32.y43.v4
+ y23.y32.y43.v3
+ y23.y33.y42.v4
+ y23.y34.y4.v4
+ y23.y34.y4.v3
+ y23.y35.v4
+ y24.y44.v3
+ y24.y3.y43.v4
+ y24.y32.y42.v4
+ y24.y34.v3
+ y25.y3.y42.v4
+ y25.y3.y42.v3
+ y25.y32.y4.v3
+ y25.y33.v4
+ y25.y33.v3
+ y26.y3.y4.v3
+ y26.y32.v4
+ y26.y32.v3
+ y28.v4
+ y28.v3
+ y1.y26.y3.v4
+ y1.y26.y3.v3
+ y12.y56.v4
+ y12.y23.w.v4
+ y12.y26.v4
+ y12.y26.v3
+ y14.y54.v4
+ y14.y54.v3
+ y14.y24.v3
+ y16.y52.v4
+ y16.y52.v3
+ y16.y42.v3
+ y16.y2.y3.v3
+ y16.y22.v4
+ y16.y22.v3
+ y54.v32
+ y44.v32
+ y32.y42.v42
+ y34.v3.v4
+ y22.y52.v42
+ y22.y52.v32
+ y22.y42.v3.v4
+ y22.y42.v32
+ y22.y32.v3.v4
+ y22.y32.v32
+ y24.v32
+ y12.y42.v42
+ y12.y22.v3.v4
+ y12.y22.v32
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.y32 =
y1.y2.y4
+ y1.y2.y3
+ y12.y2
- y1.y2.y42 =
y13.y2
- y1.y22.y4 =
y12.y2.y3
+ y12.y22
- y12.y2.y4 =
y12.y2.y3
+ y13.y2
- y12.y22.y3 =
y13.y2.y3
- y1.y2.y4.w =
y12.y2.w
+ y14.y2.y3
This cohomology ring was obtained from a calculation
out to degree 12. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 12
onwards.
This cohomology ring has dimension 5 and depth 3.
Here is a homogeneous system of parameters:
- h1 =
v3
in degree 4
- h2 =
v4
in degree 4
- h3 =
y54
+ y44
+ y32.y42
+ y34
+ y2.y3.y42
+ y2.y32.y4
+ y22.y52
+ y22.y42
+ y22.y3.y4
+ y22.y32
+ y24
+ y12.y52
+ y12.y42
+ y12.y22
+ y14
in degree 4
- h4 =
y32
+ y2.y3
+ y22
+ y1.y3
+ y12
in degree 2
- h5 =
y3
in degree 1
The first
3 terms h1, h2, h3 form
a regular sequence of maximum length.
The first
2 terms h1, h2 form
a complete Duflot regular sequence.
That is, their restrictions to the greatest central elementary abelian
subgroup form a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, -1, 6, 9, 10.
-
Filter degree type:
-1, -2, -3, -4, -5, -5.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4, h5) is as follows.
-
1
in degree 0
-
y5
in degree 1
-
y4
in degree 1
-
y2
in degree 1
-
y1
in degree 1
-
y52
in degree 2
-
y42
in degree 2
-
y2.y4
in degree 2
-
y1.y5
in degree 2
-
y1.y4
in degree 2
-
y1.y2
in degree 2
-
y12
in degree 2
-
w
in degree 3
-
y53
in degree 3
-
y43
in degree 3
-
y2.y42
in degree 3
-
y1.y52
in degree 3
-
y1.y42
in degree 3
-
y12.y4
in degree 3
-
y12.y2
in degree 3
-
y13
in degree 3
-
v2
in degree 4
-
v1
in degree 4
-
y5.w
in degree 4
-
y4.w
in degree 4
-
y44
in degree 4
-
y2.w
in degree 4
-
y2.y43
in degree 4
-
y1.w
in degree 4
-
y1.y53
in degree 4
-
y1.y43
in degree 4
-
y12.y42
in degree 4
-
y13.y2
in degree 4
-
y14
in degree 4
-
y52.w
in degree 5
-
y4.v1
in degree 5
-
y42.w
in degree 5
-
y2.v2
in degree 5
-
y2.v1
in degree 5
-
y2.y4.w
in degree 5
-
y1.y5.w
in degree 5
-
y1.y4.w
in degree 5
-
y1.y44
in degree 5
-
y1.y2.w
in degree 5
-
y12.w
in degree 5
-
y12.y43
in degree 5
-
y14.y2
in degree 5
-
y15
in degree 5
-
t
in degree 6
-
y53.w
in degree 6
-
y42.v1
in degree 6
-
y43.w
in degree 6
-
y2.y4.v1
in degree 6
-
y2.y42.w
in degree 6
-
y1.y52.w
in degree 6
-
y1.y42.w
in degree 6
-
y12.y4.w
in degree 6
-
y12.y2.w
in degree 6
-
y13.w
in degree 6
-
y16
in degree 6
-
y4.t
in degree 7
-
y43.v1
in degree 7
-
y44.w
in degree 7
-
y2.t
in degree 7
-
y2.y42.v1
in degree 7
-
y2.y43.w
in degree 7
-
y1.y53.w
in degree 7
-
y1.y43.w
in degree 7
-
y12.y42.w
in degree 7
-
y13.y2.w
in degree 7
-
y14.w
in degree 7
-
y42.t
in degree 8
-
y2.y4.t
in degree 8
-
y1.y44.w
in degree 8
-
y12.y43.w
in degree 8
-
y14.y2.w
in degree 8
-
y15.w
in degree 8
-
y43.t
in degree 9
-
y2.y42.t
in degree 9
-
y2.y43.t
in degree 10
A basis for AnnR/(h1, h2, h3, h4)(h5) is as follows.
-
y1.y5
+ y1.y2
in degree 2
-
y1.y4
+ y1.y2
+ y1.h
in degree 2
-
y1.y52
+ y1.y2.y5
in degree 3
-
y1.y42
+ y1.y2.y4
+ y1.y4.h
in degree 3
-
y12.y4
+ y12.y2
+ y12.h
in degree 3
-
y12.y2
+ y13
+ y12.h
+ y5.h2
+ y1.h2
in degree 3
-
y1.y2.h
+ y5.h2
+ y1.h2
in degree 3
-
y12.h
in degree 3
-
y5.h2
in degree 3
-
y1.w
+ y14
in degree 4
-
y1.y53
+ y1.y2.y52
in degree 4
-
y1.y43
+ y1.y2.y42
+ y1.y42.h
in degree 4
-
y12.y42
+ y12.y2.y4
+ y12.y4.h
in degree 4
-
y13.y2
+ y14
+ y13.h
+ y1.y5.h2
+ y12.h2
in degree 4
-
y13.h
in degree 4
-
y52.h2
in degree 4
-
y1.h3
in degree 4
-
y1.y5.w
+ y1.y2.w
in degree 5
-
y1.y4.w
+ y1.y2.w
+ y1.w.h
in degree 5
-
y1.y44
+ y1.y2.y43
+ y1.y43.h
in degree 5
-
y1.y2.w
+ y14.y2
in degree 5
-
y12.w
+ y15
in degree 5
-
y12.y43
+ y12.y2.y42
+ y12.y42.h
in degree 5
-
y14.y2
+ y15
+ y14.h
+ y12.y5.h2
+ y13.h2
in degree 5
-
y15
in degree 5
-
y14.h
in degree 5
-
y53.h2
in degree 5
-
y1.y52.w
+ y1.y2.y5.w
in degree 6
-
y1.y42.w
+ y1.y2.y4.w
+ y1.y4.w.h
in degree 6
-
y12.y4.w
+ y12.y2.w
+ y12.w.h
in degree 6
-
y12.y2.w
+ y13.w
+ y12.w.h
+ y5.w.h2
+ y1.w.h2
in degree 6
-
y13.w
+ y16
in degree 6
-
y16
in degree 6
-
y5.w.h2
in degree 6
-
y44.h2
+ y4.h5
in degree 6
-
y1.y53.w
+ y1.y2.y52.w
in degree 7
-
y1.y43.w
+ y1.y2.y42.w
+ y1.y42.w.h
in degree 7
-
y12.y42.w
+ y12.y2.y4.w
+ y12.y4.w.h
in degree 7
-
y13.y2.w
+ y14.w
+ y13.w.h
+ y1.y5.w.h2
+ y12.w.h2
in degree 7
-
y14.w
+ y17
in degree 7
-
y52.w.h2
in degree 7
-
y1.y44.w
+ y1.y2.y43.w
+ y1.y43.w.h
in degree 8
-
y12.y43.w
+ y12.y2.y42.w
+ y12.y42.w.h
in degree 8
-
y14.y2.w
+ y15.w
+ y14.w.h
+ y12.y5.w.h2
+ y13.w.h2
in degree 8
-
y15.w
+ y18
in degree 8
-
y53.w.h2
in degree 8
-
y43.v1.h2
+ y2.y43.w.h2
+ y42.v1.h3
+ y43.w.h3
+ y2.y42.w.h3
+ y4.v1.h4
+ y42.w.h4
+ y2.y4.w.h4
+ y4.w.h5
in degree 9
-
y44.w.h2
+ y4.w.h5
in degree 9
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y1.y22
+ y12.y3
+ y13
+ y1.h
in degree 3
-
y13.y5
+ y14
+ y1.y5.h
+ y1.y3.h
+ y12.h
in degree 4
-
y14.y3
+ y12.y3.h
in degree 5
-
y1.y2.y3.h
in degree 5
-
y12.y3.h
in degree 5
-
y13.y3.h
in degree 6
-
y1.y3.h2
in degree 6