Small group number 515 of order 128
G is the group 128gp515
G has 3 minimal generators, rank 5 and exponent 8.
The centre has rank 2.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
5, 5.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 17 generators:
- y1 in degree 1, a nilpotent element
 
- y2 in degree 1
 
- y3 in degree 1
 
- x1 in degree 2
 
- x2 in degree 2
 
- x3 in degree 2
 
- x4 in degree 2
 
- x5 in degree 2, a regular element
 
- w1 in degree 3
 
- w2 in degree 3
 
- w3 in degree 3
 
- w4 in degree 3
 
- v1 in degree 4
 
- v2 in degree 4
 
- v3 in degree 4
 
- v4 in degree 4, a regular element
 
- u in degree 5
 
There are 86 minimal relations:
- y1.y3 =
0
 
- y1.y2 =
0
 
- y12 =
0
 
- y3.x3 =
y2.x4
 
- y1.x4 =
0
 
- y1.x3 =
0
 
- y1.x2 =
0
 
- y1.x1 =
0
 
- x42 =
y32.x4
 
- x3.x4 =
y2.y3.x4
 
- x32 =
y22.x4
 
- x2.x4 =
y3.w1
 
- x2.x3 =
y2.w1
 
- x1.x4 =
y3.w4
 
- x1.x3 =
y2.w4
 
- x1.x2 =
y3.w3
+ y2.w2
 
- x12 =
y2.y3.x1
+ y22.x2
+ y32.x5
 
- y1.w4 =
0
 
- y1.w3 =
0
 
- y1.w2 =
0
 
- y1.w1 =
0
 
- x4.w4 =
y32.w4
 
- x4.w3 =
y3.v2
 
- x4.w2 =
y3.v3
+ y3.x22
 
- x4.w1 =
y32.w1
 
- x3.w4 =
y2.y3.w4
 
- x3.w3 =
y2.v2
 
- x3.w2 =
y2.v3
+ y2.x22
 
- x3.w1 =
y2.y3.w1
 
- x2.w4 =
y3.v2
+ y2.v3
+ y2.x22
 
- x1.w4 =
y2.y3.w4
+ y22.w1
+ y3.x4.x5
 
- x1.w3 =
y2.v2
+ y2.v1
+ y2.y3.w3
+ y22.w2
+ y3.x2.x5
 
- x1.w2 =
y3.v2
+ y3.v1
+ y2.x22
 
- x1.w1 =
y3.v2
+ y2.v3
+ y2.x22
 
- y1.v3 =
0
 
- y1.v2 =
0
 
- y1.v1 =
0
 
- w42 =
y2.y32.w4
+ y22.y3.w1
+ y32.x4.x5
 
- w3.w4 =
y2.u
+ y2.y3.v2
+ y22.v3
+ y22.x22
+ y3.x5.w1
 
- w32 =
y2.x2.w3
+ y22.v3
+ y22.x22
+ x22.x5
+ y22.v4
 
- w2.w4 =
y3.u
+ y2.x2.w1
 
- w2.w3 =
x2.v2
+ x2.v1
+ y2.x2.w2
+ y2.y3.v3
+ y2.y3.x22
+ y2.y3.v4
 
- w22 =
x23
+ y3.x2.w2
+ y32.v3
+ y32.x22
+ y32.v4
 
- w1.w4 =
y32.v2
+ y2.y3.v3
+ y2.y3.x22
 
- w1.w3 =
x2.v2
 
- w1.w2 =
x2.v3
+ x23
 
- w12 =
y3.x2.w1
 
- x4.v3 =
y3.x2.w1
+ y32.v3
+ y32.x22
 
- x4.v2 =
y32.v2
 
- x4.v1 =
y3.u
+ y32.v2
 
- x3.v3 =
y2.x2.w1
+ y2.y3.v3
+ y2.y3.x22
 
- x3.v2 =
y2.y3.v2
 
- x3.v1 =
y2.u
+ y2.y3.v2
 
- x1.v3 =
y3.u
+ y3.x2.w3
+ y2.x2.w2
+ y2.x2.w1
 
- x1.v2 =
y2.u
+ y2.y3.v2
+ y22.v3
+ y22.x22
+ y3.x5.w1
 
- x1.v1 =
y2.u
+ y2.x2.w3
+ y2.y3.v1
+ y22.v3
+ y3.x5.w2
+ y3.x5.w1
 
- y1.u =
0
 
- w4.v3 =
y3.x2.v2
+ y32.u
+ y2.x2.v3
+ y2.x23
+ y2.y3.x2.w1
 
- w4.v2 =
y2.y3.u
+ y2.y32.v2
+ y22.y3.v3
+ y22.y3.x22
+ y32.x5.w1
 
- w4.v1 =
y2.x2.v2
+ y2.y32.v2
+ y22.x2.w1
+ y22.y3.v3
+ y22.y3.x22
+ y3.x5.v3
+ y3.x22.x5
+ y32.x5.w1
 
- w3.v3 =
x2.u
+ x22.w3
+ y2.x2.v3
+ y2.x23
+ y2.y32.v3
+ y2.y32.x22
+ y2.x4.v4
 
- w3.v2 =
y2.x2.v2
+ y22.y3.v3
+ y22.y3.x22
+ x2.x5.w1
+ y2.x3.v4
 
- w3.v1 =
y2.x2.v2
+ y2.y3.u
+ y22.x2.w1
+ y22.y3.v3
+ y22.y3.x22
+ x2.x5.w2
+ x2.x5.w1
+ y2.x3.v4
+ y2.x1.v4
 
- w2.v3 =
x22.w2
+ x22.w1
+ y3.x2.v3
+ y3.x23
+ y33.v3
+ y33.x22
+ y3.x4.v4
 
- w2.v2 =
x2.u
+ y2.x2.v3
+ y2.x23
+ y2.y32.v3
+ y2.y32.x22
+ y2.x4.v4
 
- w2.v1 =
x2.u
+ x22.w3
+ y3.x2.v2
+ y3.x2.v1
+ y32.u
+ y2.x2.v3
+ y2.y3.x2.w1
+ y2.y32.v3
+ y2.y32.x22
+ y3.x1.v4
+ y2.x4.v4
 
- w1.v3 =
x22.w1
+ y3.x2.v3
+ y3.x23
 
- w1.v2 =
y3.x2.v2
 
- w1.v1 =
x2.u
+ y3.x2.v2
 
- x4.u =
y32.u
 
- x3.u =
y2.y3.u
 
- x1.u =
y2.x2.v2
+ y2.y3.u
+ y22.x2.w1
+ y3.x5.v3
+ y3.x22.x5
 
- v32 =
x24
+ y3.x22.w1
+ y32.x2.v3
+ y32.x23
+ y34.v3
+ y34.x22
+ y32.x4.v4
 
- v2.v3 =
x22.v2
+ y3.x2.u
+ y2.y3.x2.v3
+ y2.y3.x23
+ y2.y33.v3
+ y2.y33.x22
+ y2.y3.x4.v4
 
- v22 =
y2.y3.x2.v2
+ y22.y32.v3
+ y22.y32.x22
+ y3.x2.x5.w1
+ y22.x4.v4
 
- v1.v3 =
x22.v2
+ x22.v1
+ y33.u
+ y2.x22.w1
+ y2.y3.x2.v3
+ y2.y3.x23
+ y2.y32.x2.w1
+ y2.y33.v3
+ y2.y33.x22
+ y3.w4.v4
+ y2.y3.x4.v4
 
- v1.v2 =
y2.y3.x2.v2
+ y2.y32.u
+ y22.y3.x2.w1
+ y22.y32.v3
+ y22.y32.x22
+ x2.x5.v3
+ x23.x5
+ y3.x2.x5.w1
+ y2.w4.v4
+ y22.x4.v4
 
- v12 =
y2.x22.w3
+ y2.y3.x2.v1
+ y2.y32.u
+ y22.x2.v3
+ y22.y3.x2.w1
+ y22.y32.v3
+ y22.y32.x22
+ x23.x5
+ y3.x2.x5.w2
+ y3.x2.x5.w1
+ y32.x5.v3
+ y32.x22.x5
+ y2.y3.x1.v4
+ y22.x4.v4
+ y22.x2.v4
+ y32.x5.v4
 
- w4.u =
y2.y3.x2.v2
+ y2.y32.u
+ y22.y3.x2.w1
+ y32.x5.v3
+ y32.x22.x5
 
- w3.u =
y2.y32.u
+ y22.y3.x2.w1
+ x2.x5.v3
+ x23.x5
+ y2.w4.v4
 
- w2.u =
x22.v2
+ y3.x2.u
+ y33.u
+ y2.x22.w1
+ y2.y32.x2.w1
+ y3.w4.v4
 
- w1.u =
y3.x2.u
 
- v3.u =
x22.u
+ y3.x22.v2
+ y32.x2.u
+ y34.u
+ y2.y3.x22.w1
+ y2.y33.x2.w1
+ y32.w4.v4
 
- v2.u =
y2.y33.u
+ y22.y32.x2.w1
+ y3.x2.x5.v3
+ y3.x23.x5
+ y2.y3.w4.v4
 
- v1.u =
y2.x22.v2
+ y2.y3.x2.u
+ y22.x22.w1
+ y22.y3.x2.v3
+ y22.y3.x23
+ x22.x5.w1
+ y33.x5.v3
+ y33.x22.x5
+ y22.w1.v4
+ y3.x4.x5.v4
 
- u2 =
y2.y3.x22.v2
+ y2.y32.x2.u
+ y2.y34.u
+ y22.y3.x22.w1
+ y22.y32.x2.v3
+ y22.y32.x23
+ y22.y33.x2.w1
+ y3.x22.x5.w1
+ y32.x2.x5.v3
+ y32.x23.x5
+ y34.x5.v3
+ y34.x22.x5
+ y2.y32.w4.v4
+ y22.y3.w1.v4
+ y32.x4.x5.v4
 
This minimal generating set constitutes a Gröbner
basis for the relations ideal.
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 10 onwards, and
Benson's tests detect stability from degree 13
onwards.
This cohomology ring has dimension 5 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
x5
in degree 2
 
- h2 =
v4
in degree 4
 
- h3 =
x22
+ y34
+ y2.y3.x2
+ y22.x2
+ y22.y32
+ y24
in degree 4
 
- h4 =
y32.x22
+ y2.y3.x22
+ y2.y33.x2
+ y22.x22
+ y22.y34
+ y24.x2
+ y24.y32
in degree 6
 
- h5 =
y3
in degree 1
 
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
2 terms h1, h2 form
a complete Duflot regular sequence.
That is, their restrictions to the greatest central elementary abelian
subgroup form a regular sequence of maximal length.
Data for Benson's test:
- 
Raw filter degree type:
-1, -1, 1, 5, 11, 12.
 - 
Filter degree type:
-1, -2, -3, -4, -5, -5.
 - 
α = 0
 - 
The system of parameters is very strongly quasi-regular.
 - 
The regularity conjecture is satisfied.
 
A basis for R/(h1, h2, h3, h4, h5) is as follows.
- 
1
in degree 0
 
- 
y2
in degree 1
 
- 
y1
in degree 1
 
- 
x4
in degree 2
 
- 
x3
in degree 2
 
- 
x2
in degree 2
 
- 
x1
in degree 2
 
- 
y22
in degree 2
 
- 
w4
in degree 3
 
- 
w3
in degree 3
 
- 
w2
in degree 3
 
- 
w1
in degree 3
 
- 
y2.x3
in degree 3
 
- 
y2.x2
in degree 3
 
- 
y2.x1
in degree 3
 
- 
y23
in degree 3
 
- 
v3
in degree 4
 
- 
v2
in degree 4
 
- 
v1
in degree 4
 
- 
y2.w4
in degree 4
 
- 
y2.w3
in degree 4
 
- 
y2.w2
in degree 4
 
- 
y2.w1
in degree 4
 
- 
y22.x3
in degree 4
 
- 
y22.x2
in degree 4
 
- 
y22.x1
in degree 4
 
- 
y24
in degree 4
 
- 
u
in degree 5
 
- 
x2.w3
in degree 5
 
- 
x2.w2
in degree 5
 
- 
x2.w1
in degree 5
 
- 
y2.v3
in degree 5
 
- 
y2.v2
in degree 5
 
- 
y2.v1
in degree 5
 
- 
y22.w4
in degree 5
 
- 
y22.w3
in degree 5
 
- 
y22.w2
in degree 5
 
- 
y22.w1
in degree 5
 
- 
y23.x3
in degree 5
 
- 
y23.x2
in degree 5
 
- 
y23.x1
in degree 5
 
- 
y25
in degree 5
 
- 
x2.v3
in degree 6
 
- 
x2.v2
in degree 6
 
- 
x2.v1
in degree 6
 
- 
y2.u
in degree 6
 
- 
y2.x2.w3
in degree 6
 
- 
y22.v3
in degree 6
 
- 
y22.v2
in degree 6
 
- 
y22.v1
in degree 6
 
- 
y23.w4
in degree 6
 
- 
y23.w3
in degree 6
 
- 
y23.w2
in degree 6
 
- 
y23.w1
in degree 6
 
- 
y24.x3
in degree 6
 
- 
y24.x2
in degree 6
 
- 
y24.x1
in degree 6
 
- 
x2.u
in degree 7
 
- 
y2.x2.v2
in degree 7
 
- 
y2.x2.v1
in degree 7
 
- 
y22.u
in degree 7
 
- 
y22.x2.w3
in degree 7
 
- 
y23.v3
in degree 7
 
- 
y23.v2
in degree 7
 
- 
y23.v1
in degree 7
 
- 
y24.w4
in degree 7
 
- 
y24.w3
in degree 7
 
- 
y24.w2
in degree 7
 
- 
y24.w1
in degree 7
 
- 
y25.x3
in degree 7
 
- 
y25.x2
in degree 7
 
- 
y25.x1
in degree 7
 
- 
y2.x2.u
in degree 8
 
- 
y22.x2.v2
in degree 8
 
- 
y22.x2.v1
in degree 8
 
- 
y23.u
in degree 8
 
- 
y23.x2.w3
in degree 8
 
- 
y24.v3
in degree 8
 
- 
y24.v2
in degree 8
 
- 
y24.v1
in degree 8
 
- 
y25.w4
in degree 8
 
- 
y25.w3
in degree 8
 
- 
y25.w2
in degree 8
 
- 
y25.w1
in degree 8
 
- 
y22.x2.u
in degree 9
 
- 
y23.x2.v2
in degree 9
 
- 
y23.x2.v1
in degree 9
 
- 
y24.u
in degree 9
 
- 
y24.x2.w3
in degree 9
 
- 
y25.v3
in degree 9
 
- 
y25.v2
in degree 9
 
- 
y25.v1
in degree 9
 
- 
y23.x2.u
in degree 10
 
- 
y24.x2.v2
in degree 10
 
- 
y24.x2.v1
in degree 10
 
- 
y25.u
in degree 10
 
- 
y25.x2.w3
in degree 10
 
- 
y24.x2.u
in degree 11
 
- 
y25.x2.v2
in degree 11
 
- 
y25.x2.v1
in degree 11
 
- 
y25.x2.u
in degree 12
 
A basis for AnnR/(h1, h2, h3, h4)(h5) is as follows.
- 
y1
in degree 1
 
- 
x2.w1
+ y22.w1
+ y23.x3
+ y2.w1.h
+ y2.x3.h2
+ x4.h3
in degree 5
 
- 
y25.x3
+ y24.x3.h
+ y23.x3.h2
+ y22.x3.h3
+ y2.x3.h4
+ x4.h5
+ x3.h5
in degree 7
 
- 
y25.x2.w3
+ y24.x2.w3.h
+ y23.x2.w3.h2
+ y22.x2.w3.h3
+ y25.x1.h3
+ y2.x2.w3.h4
+ y24.x1.h4
+ x2.w3.h5
+ x2.w2.h5
+ y22.w2.h5
+ y2.w3.h6
+ y2.w2.h6
+ y22.x1.h6
+ w3.h7
+ x1.h8
in degree 10
 
- 
y25.x2.v2
+ y24.x2.v2.h
+ y23.x2.v2.h2
+ y22.x2.v2.h3
+ y25.w4.h3
+ y2.x2.v2.h4
+ y24.w4.h4
+ x2.v3.h5
+ x2.v2.h5
+ y22.v3.h5
+ y24.x2.h5
+ y2.v3.h6
+ y2.v2.h6
+ y22.w4.h6
+ v2.h7
+ y22.x2.h7
+ w4.h8
+ x2.h9
in degree 11
 
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
- 
y1
in degree 1
 
- 
x2.w1
+ y33.x4
+ y2.y3.w1
+ y22.w1
+ y22.y3.x4
+ y23.x3
in degree 5
 
A basis for AnnR/(h1, h2)(h3) is as follows.
Restriction to special subgroup number 1, which is 4gp2
- y1 restricts to
0
 
- y2 restricts to
0
 
- y3 restricts to
0
 
- x1 restricts to
0
 
- x2 restricts to
0
 
- x3 restricts to
0
 
- x4 restricts to
0
 
- x5 restricts to
y12
 
- w1 restricts to
0
 
- w2 restricts to
0
 
- w3 restricts to
0
 
- w4 restricts to
0
 
- v1 restricts to
0
 
- v2 restricts to
0
 
- v3 restricts to
0
 
- v4 restricts to
y24
 
- u restricts to
0
 
Restriction to special subgroup number 2, which is 32gp51
- y1 restricts to
0
 
- y2 restricts to
y4
 
- y3 restricts to
y3
 
- x1 restricts to
y4.y5
+ y1.y3
 
- x2 restricts to
y52
+ y3.y5
 
- x3 restricts to
0
 
- x4 restricts to
0
 
- x5 restricts to
y1.y4
+ y12
 
- w1 restricts to
0
 
- w2 restricts to
y53
+ y32.y5
+ y2.y32
+ y22.y3
 
- w3 restricts to
y4.y52
+ y3.y4.y5
+ y2.y3.y4
+ y22.y4
+ y1.y52
+ y1.y3.y5
 
- w4 restricts to
0
 
- v1 restricts to
y2.y3.y4.y5
+ y22.y4.y5
+ y1.y53
+ y1.y32.y5
+ y1.y2.y32
+ y1.y22.y3
 
- v2 restricts to
0
 
- v3 restricts to
y54
+ y32.y52
 
- v4 restricts to
y2.y3.y52
+ y2.y32.y5
+ y22.y52
+ y22.y3.y5
+ y22.y32
+ y24
 
- u restricts to
0
 
Restriction to special subgroup number 3, which is 32gp51
- y1 restricts to
0
 
- y2 restricts to
y3
 
- y3 restricts to
y5
 
- x1 restricts to
y3.y4
+ y1.y5
 
- x2 restricts to
y4.y5
+ y42
 
- x3 restricts to
y3.y5
 
- x4 restricts to
y52
 
- x5 restricts to
y1.y3
+ y12
 
- w1 restricts to
y4.y52
+ y42.y5
 
- w2 restricts to
y53
+ y4.y52
+ y43
+ y2.y52
+ y22.y5
 
- w3 restricts to
y3.y52
+ y3.y4.y5
+ y3.y42
+ y2.y3.y5
+ y22.y3
+ y1.y4.y5
+ y1.y42
 
- w4 restricts to
y3.y4.y5
+ y1.y52
 
- v1 restricts to
y3.y53
+ y3.y42.y5
+ y2.y3.y52
+ y2.y3.y4.y5
+ y22.y3.y5
+ y22.y3.y4
+ y1.y53
+ y1.y42.y5
+ y1.y43
+ y1.y2.y52
+ y1.y22.y5
 
- v2 restricts to
y3.y53
+ y3.y4.y52
+ y3.y42.y5
+ y2.y3.y52
+ y22.y3.y5
+ y1.y4.y52
+ y1.y42.y5
 
- v3 restricts to
y54
+ y4.y53
+ y42.y52
+ y43.y5
+ y44
+ y2.y53
+ y22.y52
 
- v4 restricts to
y42.y52
+ y43.y5
+ y2.y53
+ y2.y4.y52
+ y2.y42.y5
+ y22.y4.y5
+ y22.y42
+ y24
 
- u restricts to
y3.y4.y53
+ y2.y3.y4.y52
+ y22.y3.y4.y5
+ y1.y54
+ y1.y4.y53
+ y1.y43.y5
+ y1.y2.y53
+ y1.y22.y52
 
(1 + 2t + 4t2
+ 8t3 + 11t4 + 14t5
+ 15t6 + 14t7 + 12t8
+ 8t9 + 5t10 + 2t11) /
(1 - t) (1 - t2) (1 - t4)2 (1 - t6\
)
Back to the groups of order 128