Small group number 635 of order 128
G is the group 128gp635
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 12 generators:
- y1 in degree 1, a nilpotent element
 
- y2 in degree 1
 
- y3 in degree 1
 
- x1 in degree 2
 
- x2 in degree 2
 
- x3 in degree 2
 
- x4 in degree 2
 
- w in degree 3
 
- u1 in degree 5
 
- u2 in degree 5
 
- t in degree 6
 
- r in degree 8, a regular element
 
There are 32 minimal relations:
- y2.y3 =
y1.y2
 
- y1.y3 =
0
 
- y12 =
0
 
- y3.x4 =
y3.x1
+ y1.x1
 
- y2.x4 =
y1.x1
 
- y2.x3 =
y2.x1
+ y1.x3
+ y1.x2
 
- y1.x4 =
0
 
- x42 =
y32.x3
+ y32.x1
 
- x3.x4 =
x1.x3
+ y22.x2
+ y1.w
+ y1.y2.x2
+ y1.y2.x1
 
- x2.x4 =
x1.x2
+ y2.w
+ y22.x2
+ y1.w
+ y1.y2.x2
+ y1.y2.x1
 
- x1.x4 =
y32.x3
+ y32.x1
+ y1.y2.x2
 
- x12 =
y32.x3
+ y32.x1
+ y22.x2
+ y1.y2.x1
 
- x4.w =
x1.w
+ y2.x22
+ y22.w
+ y23.x2
+ y1.x32
+ y1.x22
+ y1.y22.x1
 
- y1.x2.x3 =
y1.x22
+ y1.y2.w
 
- w2 =
x33
+ x23
+ y3.u2
+ y3.x3.w
+ y3.x1.w
+ y32.x2.x3
+ y32.x1.x3
+ y33.w
+ y34.x3
+ y34.x2
+ y36
+ y22.x22
+ y23.w
+ y24.x2
+ y1.x2.w
+ y1.y22.w
+ y1.y23.x2
+ y1.y23.x1
 
- x1.x2.x3 =
x1.x22
+ y3.u2
+ y3.u1
+ y32.x2.x3
+ y32.x22
+ y32.x1.x2
+ y34.x3
+ y34.x1
+ y36
+ y2.x2.w
 
- y2.u2 =
y2.x2.w
+ y22.x22
+ y23.w
+ y1.y22.w
+ y1.y23.x2
+ y1.y23.x1
 
- y1.u2 =
y1.y23.x2
 
- y1.u1 =
y1.y22.w
+ y1.y23.x2
 
- x4.u2 =
y3.t
+ y3.x22.x3
+ y3.x1.x32
+ y3.x1.x22
+ y32.u2
+ y32.u1
+ y32.x1.w
+ y33.x32
+ y33.x22
+ y33.x1.x3
+ y34.w
+ y35.x2
+ y35.x1
+ y37
+ y1.y23.w
 
- x4.u1 =
y3.t
+ y3.x2.x32
+ y3.x1.x32
+ y3.x1.x22
+ y32.u2
+ y32.u1
+ y32.x1.w
+ y33.x32
+ y33.x2.x3
+ y33.x22
+ y33.x1.x2
+ y34.w
+ y35.x3
+ y35.x2
+ y35.x1
+ y37
+ y1.y23.w
 
- x1.u2 =
y3.t
+ y3.x22.x3
+ y3.x1.x32
+ y3.x1.x22
+ y32.u2
+ y32.u1
+ y32.x1.w
+ y33.x32
+ y33.x22
+ y33.x1.x3
+ y34.w
+ y35.x2
+ y35.x1
+ y37
+ y2.x23
+ y23.x22
+ y24.w
+ y25.x2
+ y1.y24.x2
+ y1.y24.x1
 
- x1.u1 =
y3.t
+ y3.x2.x32
+ y3.x1.x32
+ y3.x1.x22
+ y32.u2
+ y32.u1
+ y32.x1.w
+ y33.x32
+ y33.x2.x3
+ y33.x22
+ y33.x1.x2
+ y34.w
+ y35.x3
+ y35.x2
+ y35.x1
+ y37
+ y2.t
+ y2.x23
+ y22.u1
+ y23.x22
+ y1.y23.w
+ y1.y24.x2
+ y1.y24.x1
 
- y1.t =
y1.x23
+ y1.y23.w
+ y1.y24.x2
 
- x4.t =
x1.x23
+ y3.x3.u2
+ y3.x2.u2
+ y3.x2.u1
+ y32.t
+ y32.x33
+ y32.x2.x32
+ y32.x23
+ y32.x1.x32
+ y33.u2
+ y33.u1
+ y33.x3.w
+ y33.x1.w
+ y34.x22
+ y34.x1.x3
+ y34.x1.x2
+ y35.w
+ y36.x1
+ y38
+ y2.x22.w
+ y22.x23
+ y1.x22.w
+ y1.y24.w
 
- x1.t =
x1.x23
+ y3.x3.u2
+ y3.x2.u2
+ y3.x2.u1
+ y32.t
+ y32.x33
+ y32.x2.x32
+ y32.x23
+ y32.x1.x32
+ y33.u2
+ y33.u1
+ y33.x3.w
+ y33.x1.w
+ y34.x22
+ y34.x1.x3
+ y34.x1.x2
+ y35.w
+ y36.x1
+ y38
+ y2.x2.u1
+ y22.t
+ y22.x23
+ y23.u1
+ y23.x2.w
+ y1.y24.w
+ y1.y25.x1
 
- u22 =
x23.x32
+ x25
+ y3.x2.x3.u2
+ y3.x22.u2
+ y32.w.u2
+ y32.w.u1
+ y32.x34
+ y32.x24
+ y32.x1.x23
+ y33.x3.u2
+ y33.x2.u1
+ y34.t
+ y34.x33
+ y34.x2.x32
+ y34.x23
+ y34.x1.x32
+ y35.x2.w
+ y36.x32
+ y36.x1.x2
+ y38.x3
+ y310
+ y22.x24
+ y24.x23
+ y26.x22
+ y1.y27.x2
+ y32.r
 
- u1.u2 =
x2.x3.t
+ x22.t
+ x24.x3
+ x25
+ y3.x32.u2
+ y3.x32.u1
+ y3.x2.x3.u2
+ y3.x2.x3.u1
+ y32.x34
+ y32.x2.t
+ y32.x23.x3
+ y32.x24
+ y32.x1.x23
+ y33.x3.u2
+ y33.x3.u1
+ y33.x2.u2
+ y34.x2.x32
+ y34.x23
+ y34.x1.x32
+ y35.u2
+ y35.x3.w
+ y36.x22
+ y36.x1.x2
+ y38.x3
+ y310
+ y22.x24
+ y23.x2.u1
+ y23.x22.w
+ y24.x23
+ y1.y26.w
+ y32.r
 
- u12 =
x22.x33
+ x23.x32
+ x24.x3
+ x25
+ y3.x2.x3.u1
+ y3.x22.u1
+ y32.w.u2
+ y32.w.u1
+ y32.x34
+ y32.x24
+ y32.x1.x23
+ y33.x3.u2
+ y33.x2.u2
+ y34.t
+ y34.x33
+ y34.x22.x3
+ y34.x1.x32
+ y35.u2
+ y35.u1
+ y35.x2.w
+ y36.x2.x3
+ y36.x1.x2
+ y38.x3
+ y38.x2
+ y310
+ y2.x23.w
+ y23.x22.w
+ y24.x23
+ y1.y26.w
+ y1.y27.x2
+ y32.r
 
- u2.t =
x22.x3.u1
+ x23.u2
+ x23.u1
+ y3.x32.t
+ y3.x22.t
+ y3.x22.x33
+ y3.x23.x32
+ y3.x24.x3
+ y3.x25
+ y32.w.t
+ y32.x32.u1
+ y32.x2.x3.u2
+ y32.x2.x32.w
+ y33.w.u1
+ y33.x34
+ y33.x1.x33
+ y33.x1.x23
+ y34.x3.u2
+ y34.x3.u1
+ y34.x2.u2
+ y34.x2.x3.w
+ y34.x1.x3.w
+ y35.x33
+ y35.x2.x32
+ y35.x23
+ y35.x1.x32
+ y36.u1
+ y36.x2.w
+ y37.x2.x3
+ y37.x22
+ y37.x1.x3
+ y37.x1.x2
+ y39.x3
+ y39.x2
+ y39.x1
+ y22.x22.u1
+ y22.x23.w
+ y23.x24
+ y24.x2.u1
+ y24.x22.w
+ y1.y28.x2
+ y3.x1.r
+ y1.x1.r
 
- u1.t =
x2.x32.u2
+ x23.u2
+ x23.u1
+ y3.x32.t
+ y3.x2.x34
+ y3.x22.t
+ y3.x22.x33
+ y3.x24.x3
+ y3.x25
+ y32.w.t
+ y32.x32.u2
+ y32.x2.x3.u2
+ y32.x2.x3.u1
+ y32.x22.x3.w
+ y33.w.u2
+ y33.x3.t
+ y33.x34
+ y33.x2.t
+ y33.x1.x33
+ y33.x1.x23
+ y34.x3.u2
+ y34.x2.u1
+ y34.x1.x3.w
+ y35.x33
+ y35.x2.x32
+ y35.x23
+ y35.x1.x32
+ y36.u1
+ y37.x1.x3
+ y37.x1.x2
+ y39.x3
+ y39.x2
+ y39.x1
+ y2.x25
+ y22.x22.u1
+ y23.x24
+ y24.x22.w
+ y1.y27.w
+ y1.y28.x2
+ y3.x1.r
+ y1.x1.r
 
- t2 =
x23.x33
+ x24.x32
+ x25.x3
+ y3.x2.x32.u2
+ y3.x22.x3.u1
+ y3.x23.u2
+ y3.x23.u1
+ y32.x3.w.u2
+ y32.x3.w.u1
+ y32.x2.x3.t
+ y32.x22.t
+ y32.x22.x33
+ y32.x25
+ y32.x1.x24
+ y33.x32.u1
+ y33.x2.x3.u1
+ y33.x2.x32.w
+ y33.x22.u2
+ y33.x22.u1
+ y33.x22.x3.w
+ y34.w.u2
+ y34.w.u1
+ y34.x34
+ y34.x2.t
+ y34.x2.x33
+ y34.x22.x32
+ y34.x24
+ y35.x3.u2
+ y35.x3.u1
+ y35.x32.w
+ y36.x33
+ y36.x23
+ y37.u2
+ y37.x3.w
+ y37.x2.w
+ y38.x2.x3
+ y38.x22
+ y38.x1.x3
+ y310.x2
+ y312
+ y2.x24.w
+ y22.x25
+ y23.x23.w
+ y1.y28.w
+ y1.y29.x2
+ y32.x3.r
+ y32.x1.r
 
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y2.x1.x2 =
y22.w
+ y23.x2
+ y1.y22.x1
 
- y1.x1.x3 =
y1.y22.x2
 
- y1.x1.x2 =
y1.y2.w
+ y1.y22.x2
 
- y2.x1.w =
y22.x22
+ y23.w
+ y24.x2
+ y1.y22.w
+ y1.y23.x1
 
- y1.x1.w =
y1.y22.w
 
- y1.y2.x22 =
y1.y23.x2
 
- y1.y2.x2.w =
y1.y23.w
 
- y2.w.u1 =
y2.x2.t
+ y2.x24
+ y23.x23
+ y1.y25.w
 
- y2.w.t =
y2.x22.u1
+ y2.x23.w
+ y23.x2.u1
+ y23.x22.w
+ y1.y27.x2
 
This cohomology ring was obtained from a calculation
out to degree 17. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
 
- h2 =
x32
+ x2.x3
+ x22
+ y34
+ y2.w
+ y22.x2
+ y24
in degree 4
 
- h3 =
x2.x32
+ x22.x3
+ y32.x32
+ y32.x2.x3
+ y32.x22
+ y2.u1
+ y24.x2
in degree 6
 
- h4 =
y3
in degree 1
 
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
- 
Raw filter degree type:
-1, -1, 8, 14, 15.
 - 
Filter degree type:
-1, -2, -3, -4, -4.
 - 
α = 0
 - 
The system of parameters is very strongly quasi-regular.
 - 
The regularity conjecture is satisfied.
 
A basis for R/(h1, h2, h3, h4) is as follows.
- 
1
in degree 0
 
- 
y2
in degree 1
 
- 
y1
in degree 1
 
- 
x4
in degree 2
 
- 
x3
in degree 2
 
- 
x2
in degree 2
 
- 
x1
in degree 2
 
- 
y22
in degree 2
 
- 
w
in degree 3
 
- 
y2.x2
in degree 3
 
- 
y2.x1
in degree 3
 
- 
y23
in degree 3
 
- 
y1.x3
in degree 3
 
- 
y1.x2
in degree 3
 
- 
x2.x3
in degree 4
 
- 
x22
in degree 4
 
- 
x1.x3
in degree 4
 
- 
x1.x2
in degree 4
 
- 
y2.w
in degree 4
 
- 
y22.x2
in degree 4
 
- 
y22.x1
in degree 4
 
- 
y24
in degree 4
 
- 
y1.w
in degree 4
 
- 
u2
in degree 5
 
- 
u1
in degree 5
 
- 
x3.w
in degree 5
 
- 
x2.w
in degree 5
 
- 
x1.w
in degree 5
 
- 
y22.w
in degree 5
 
- 
y23.x2
in degree 5
 
- 
y23.x1
in degree 5
 
- 
y25
in degree 5
 
- 
y1.x22
in degree 5
 
- 
t
in degree 6
 
- 
x22.x3
in degree 6
 
- 
x1.x22
in degree 6
 
- 
y2.u1
in degree 6
 
- 
y23.w
in degree 6
 
- 
y24.x2
in degree 6
 
- 
y24.x1
in degree 6
 
- 
y26
in degree 6
 
- 
y1.x3.w
in degree 6
 
- 
y1.x2.w
in degree 6
 
- 
x3.u2
in degree 7
 
- 
x3.u1
in degree 7
 
- 
x2.u2
in degree 7
 
- 
x2.u1
in degree 7
 
- 
x2.x3.w
in degree 7
 
- 
x22.w
in degree 7
 
- 
x1.x3.w
in degree 7
 
- 
x1.x2.w
in degree 7
 
- 
y2.t
in degree 7
 
- 
y24.w
in degree 7
 
- 
y25.x2
in degree 7
 
- 
y25.x1
in degree 7
 
- 
y27
in degree 7
 
- 
w.u2
in degree 8
 
- 
w.u1
in degree 8
 
- 
x3.t
in degree 8
 
- 
x2.t
in degree 8
 
- 
y2.x2.u1
in degree 8
 
- 
y25.w
in degree 8
 
- 
y26.x2
in degree 8
 
- 
y26.x1
in degree 8
 
- 
y28
in degree 8
 
- 
y1.x22.w
in degree 8
 
- 
w.t
in degree 9
 
- 
x2.x3.u2
in degree 9
 
- 
x2.x3.u1
in degree 9
 
- 
x22.u2
in degree 9
 
- 
x22.u1
in degree 9
 
- 
x22.x3.w
in degree 9
 
- 
x1.x22.w
in degree 9
 
- 
y2.x2.t
in degree 9
 
- 
y26.w
in degree 9
 
- 
y27.x2
in degree 9
 
- 
y27.x1
in degree 9
 
- 
y29
in degree 9
 
- 
x3.w.u2
in degree 10
 
- 
x3.w.u1
in degree 10
 
- 
x2.w.u2
in degree 10
 
- 
x2.w.u1
in degree 10
 
- 
x2.x3.t
in degree 10
 
- 
x22.t
in degree 10
 
- 
y27.w
in degree 10
 
- 
y28.x2
in degree 10
 
- 
y28.x1
in degree 10
 
- 
y210
in degree 10
 
- 
x3.w.t
in degree 11
 
- 
x2.w.t
in degree 11
 
- 
x22.x3.u2
in degree 11
 
- 
x22.x3.u1
in degree 11
 
- 
y28.w
in degree 11
 
- 
y29.x2
in degree 11
 
- 
y29.x1
in degree 11
 
- 
y211
in degree 11
 
- 
x2.x3.w.u2
in degree 12
 
- 
x2.x3.w.u1
in degree 12
 
- 
x22.w.u2
in degree 12
 
- 
x22.w.u1
in degree 12
 
- 
x22.x3.t
in degree 12
 
- 
y29.w
in degree 12
 
- 
y210.x2
in degree 12
 
- 
y210.x1
in degree 12
 
- 
x2.x3.w.t
in degree 13
 
- 
x22.w.t
in degree 13
 
- 
y210.w
in degree 13
 
- 
y211.x2
in degree 13
 
- 
x22.x3.w.u2
in degree 14
 
- 
x22.x3.w.u1
in degree 14
 
- 
y211.w
in degree 14
 
- 
x22.x3.w.t
in degree 15
 
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
- 
y1
in degree 1
 
- 
y2.h
in degree 2
 
- 
y1.x3
in degree 3
 
- 
y1.x2
in degree 3
 
- 
x4.h
+ x1.h
in degree 3
 
- 
y22.h
in degree 3
 
- 
y1.w
in degree 4
 
- 
y2.x2.h
in degree 4
 
- 
y2.x1.h
in degree 4
 
- 
y23.h
in degree 4
 
- 
y25
in degree 5
 
- 
y1.x22
in degree 5
 
- 
y2.w.h
in degree 5
 
- 
y22.x2.h
in degree 5
 
- 
y22.x1.h
in degree 5
 
- 
y24.h
in degree 5
 
- 
y2.u1
+ y23.w
+ y24.x2
in degree 6
 
- 
y24.x1
in degree 6
 
- 
y26
in degree 6
 
- 
y1.x3.w
in degree 6
 
- 
y1.x2.w
in degree 6
 
- 
y22.w.h
in degree 6
 
- 
y23.x2.h
in degree 6
 
- 
y23.x1.h
in degree 6
 
- 
x3.u2
+ x3.u1
+ y24.w
+ x1.x22.h
+ u2.h2
+ u1.h2
+ x1.x3.h3
+ x1.x2.h3
+ h7
in degree 7
 
- 
y2.t
+ y24.w
in degree 7
 
- 
y25.x2
in degree 7
 
- 
y25.x1
in degree 7
 
- 
y27
in degree 7
 
- 
y23.w.h
in degree 7
 
- 
y24.x2.h
in degree 7
 
- 
y2.x2.u1
+ y23.x2.w
+ y24.x22
in degree 8
 
- 
y25.w
in degree 8
 
- 
y26.x2
in degree 8
 
- 
y26.x1
in degree 8
 
- 
y28
in degree 8
 
- 
y1.x22.w
in degree 8
 
- 
y24.w.h
in degree 8
 
- 
x2.x3.u2
+ x2.x3.u1
+ y24.x2.w
+ x1.x23.h
+ x2.u2.h2
+ x2.u1.h2
+ x1.x2.x3.h3
+ x1.x22.h3
+ x2.h7
in degree 9
 
- 
x22.u2
+ x22.u1
+ x22.x3.h3
+ x1.x22.h3
+ u2.h4
+ u1.h4
+ x22.h5
+ x1.x3.h5
+ x1.x2.h5
+ x2.h7
+ h9
in degree 9
 
- 
y2.x2.t
+ y24.x2.w
in degree 9
 
- 
y26.w
in degree 9
 
- 
y27.x2
in degree 9
 
- 
y27.x1
in degree 9
 
- 
y29
in degree 9
 
- 
x3.w.u2
+ x3.w.u1
+ y24.w2
+ x1.x22.w.h
+ w.u2.h2
+ w.u1.h2
+ x1.x3.w.h3
+ x1.x2.w.h3
+ w.h7
in degree 10
 
- 
y27.w
in degree 10
 
- 
y28.x2
in degree 10
 
- 
y28.x1
in degree 10
 
- 
y210
in degree 10
 
- 
x22.x3.u2
+ x22.x3.u1
+ y24.x22.w
+ x1.x24.h
+ x22.u2.h2
+ x22.u1.h2
+ x1.x22.x3.h3
+ x1.x23.h3
+ x22.h7
in degree 11
 
- 
y28.w
in degree 11
 
- 
y29.x2
in degree 11
 
- 
y29.x1
in degree 11
 
- 
y211
in degree 11
 
- 
x2.x3.w.u2
+ x2.x3.w.u1
+ y24.x2.w2
+ x1.x23.w.h
+ x2.w.u2.h2
+ x2.w.u1.h2
+ x1.x2.x3.w.h3
+ x1.x22.w.h3
+ x2.w.h7
in degree 12
 
- 
x22.w.u2
+ x22.w.u1
+ x22.x3.w.h3
+ x1.x22.w.h3
+ w.u2.h4
+ w.u1.h4
+ x22.w.h5
+ x1.x3.w.h5
+ x1.x2.w.h5
+ x2.w.h7
+ w.h9
in degree 12
 
- 
y29.w
in degree 12
 
- 
y210.x2
in degree 12
 
- 
y210.x1
in degree 12
 
- 
y210.w
in degree 13
 
- 
y211.x2
in degree 13
 
- 
x22.x3.w.u2
+ x22.x3.w.u1
+ y24.x22.w2
+ x1.x24.w.h
+ x22.w.u2.h2
+ x22.w.u1.h2
+ x1.x22.x3.w.h3
+ x1.x23.w.h3
+ x22.w.h7
in degree 14
 
- 
y211.w
in degree 14
 
A basis for AnnR/(h1, h2)(h3) is as follows.
- 
y1
in degree 1
 
- 
y1.y2
in degree 2
 
- 
y1.x3
in degree 3
 
- 
y1.x2
in degree 3
 
- 
y1.x1
in degree 3
 
- 
y1.y22
in degree 3
 
- 
y1.w
in degree 4
 
- 
y1.y2.x2
in degree 4
 
- 
y1.y2.x1
in degree 4
 
- 
y1.y23
in degree 4
 
- 
y1.x22
in degree 5
 
- 
y1.y2.w
in degree 5
 
- 
y1.y22.x2
in degree 5
 
- 
y1.y22.x1
in degree 5
 
- 
y1.y24
in degree 5
 
- 
y1.x3.w
in degree 6
 
- 
y1.x2.w
in degree 6
 
- 
y1.y22.w
in degree 6
 
- 
y1.y23.x2
in degree 6
 
- 
y1.y23.x1
in degree 6
 
- 
y1.y23.w
in degree 7
 
- 
y1.y24.x2
in degree 7
 
- 
y1.x22.w
in degree 8
 
- 
y1.y24.w
in degree 8
 
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
 
- y2 restricts to
0
 
- y3 restricts to
0
 
- x1 restricts to
0
 
- x2 restricts to
0
 
- x3 restricts to
0
 
- x4 restricts to
0
 
- w restricts to
0
 
- u1 restricts to
0
 
- u2 restricts to
0
 
- t restricts to
0
 
- r restricts to
y8
 
Restriction to special subgroup number 2, which is 8gp5
- y1 restricts to
0
 
- y2 restricts to
y2
 
- y3 restricts to
0
 
- x1 restricts to
y2.y3
 
- x2 restricts to
y32
 
- x3 restricts to
y2.y3
 
- x4 restricts to
0
 
- w restricts to
y33
+ y2.y32
 
- u1 restricts to
y35
 
- u2 restricts to
y35
+ y22.y33
+ y23.y32
 
- t restricts to
y2.y35
+ y22.y34
 
- r restricts to
y38
+ y24.y34
+ y25.y33
+ y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
 
Restriction to special subgroup number 3, which is 16gp14
- y1 restricts to
0
 
- y2 restricts to
0
 
- y3 restricts to
y3
 
- x1 restricts to
y2.y3
 
- x2 restricts to
y42
+ y3.y4
+ y2.y3
+ y22
 
- x3 restricts to
y2.y3
+ y22
 
- x4 restricts to
y2.y3
 
- w restricts to
y43
+ y32.y4
+ y2.y42
+ y22.y4
+ y22.y3
+ y1.y32
+ y12.y3
 
- u1 restricts to
y45
+ y33.y42
+ y2.y33.y4
+ y22.y43
+ y22.y3.y42
+ y22.y33
+ y23.y3.y4
+ y24.y3
+ y1.y34
+ y1.y22.y32
+ y12.y22.y3
+ y14.y3
 
- u2 restricts to
y45
+ y3.y44
+ y35
+ y2.y44
+ y2.y32.y42
+ y2.y33.y4
+ y22.y43
+ y22.y3.y42
+ y22.y33
+ y23.y42
+ y23.y32
+ y24.y3
+ y1.y34
+ y1.y22.y32
+ y12.y22.y3
+ y14.y3
 
- t restricts to
y33.y43
+ y34.y42
+ y2.y45
+ y2.y32.y43
+ y2.y34.y4
+ y2.y35
+ y22.y32.y42
+ y22.y34
+ y23.y43
+ y23.y33
+ y24.y42
+ y26
+ y1.y35
+ y1.y23.y32
+ y12.y34
+ y12.y2.y33
+ y12.y23.y3
+ y14.y2.y3
 
- r restricts to
y48
+ y3.y47
+ y33.y45
+ y34.y44
+ y36.y42
+ y37.y4
+ y2.y33.y44
+ y2.y34.y43
+ y2.y37
+ y22.y33.y43
+ y22.y35.y4
+ y23.y33.y42
+ y23.y35
+ y24.y33.y4
+ y25.y3.y42
+ y25.y33
+ y26.y3.y4
+ y27.y3
+ y28
+ y1.y2.y32.y44
+ y1.y2.y35.y4
+ y1.y2.y36
+ y1.y22.y3.y44
+ y1.y22.y33.y42
+ y1.y22.y35
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y32.y44
+ y12.y35.y4
+ y12.y36
+ y12.y2.y3.y44
+ y12.y2.y33.y42
+ y12.y22.y44
+ y12.y22.y33.y4
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y33.y4
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y2.y33
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y24
+ y18
 
(1 + 2t + 4t2
+ 5t3 + 5t4 + 6t5
+ 4t6 + 4t7 + 3t8
+ 2t9 + 3t10 + 2t11
+ 3t12 + 2t13 + t14
+ t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128