Small group number 636 of order 128
G is the group 128gp636
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 14 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2, a nilpotent element
- x2 in degree 2
- x3 in degree 2
- x4 in degree 2
- w in degree 3
- u1 in degree 5
- u2 in degree 5
- u3 in degree 5
- t1 in degree 6
- t2 in degree 6
- r in degree 8, a regular element
There are 53 minimal relations:
- y2.y3 =
y1.y2
- y1.y3 =
0
- y12 =
0
- y3.x4 =
y3.x1
+ y1.x4
- y3.x3 =
y33
+ y1.x4
+ y1.x3
+ y1.x2
- y2.x1 =
y1.x4
- y1.x1 =
0
- x42 =
y22.x2
+ y1.y2.x2
- y3.w =
x1.x2
+ y32.x1
+ y1.w
+ y1.y2.x2
- x1.x4 =
y1.y2.x2
- x1.x3 =
y32.x1
+ y1.w
- x12 =
0
- x1.w =
y1.y2.w
- y1.x2.x3 =
y1.x22
+ y1.y2.w
+ y1.y22.x2
- w2 =
x2.x32
+ x22.x3
+ y32.x22
+ y34.x2
+ y22.x2.x3
+ y1.x3.w
+ y1.x2.w
- x32.x4 =
x22.x4
+ y2.u3
+ y2.u1
+ y22.x2.x4
+ y22.x2.x3
+ y23.w
+ x1.x22
+ y34.x1
+ y1.u2
+ y1.y22.w
- x2.x3.x4 =
x22.x4
+ y2.u3
+ y22.x2.x3
+ y22.x22
+ x1.x22
+ y32.x1.x2
+ y1.x2.w
+ y1.y23.x2
- y3.u2 =
y1.u2
+ y1.x2.w
+ y1.y22.w
- y3.u1 =
y32.x22
+ y34.x2
+ y1.x3.w
+ y1.x2.w
+ y1.y22.w
- y1.u3 =
0
- y1.u1 =
y1.x3.w
+ y1.x2.w
+ y1.y22.w
- x4.u3 =
y2.x22.x3
+ y2.x23
+ y22.u3
+ y23.x2.x3
+ y23.x22
+ x1.u3
+ y1.y23.w
+ y1.y24.x2
- x4.u2 =
x2.x4.w
+ y2.t1
+ y2.x2.x32
+ y2.x22.x4
+ y2.x22.x3
+ y2.x23
+ y22.u2
+ y22.x2.w
+ y23.x3.x4
+ y23.x22
+ y25.x2
+ y1.y2.u2
+ y1.y2.x3.w
- x4.u1 =
y2.x2.x32
+ y2.x22.x4
+ y2.x22.x3
+ y22.x4.w
+ y23.x22
+ y3.x1.x22
+ y33.x1.x2
+ y1.t1
+ y1.x23
+ y1.y2.u2
+ y1.y23.w
+ y1.y24.x2
- x3.u3 =
x2.u1
+ y3.x23
+ y32.u3
+ y33.x22
+ y2.x2.x32
+ y2.x22.x4
+ y2.x22.x3
+ y2.x23
+ y22.x2.w
+ y1.t1
+ y1.y2.u2
- x3.x4.w =
x2.x4.w
+ y2.t2
+ y2.t1
+ y2.x22.x3
+ y22.u2
+ y22.x4.w
+ y22.x3.w
+ y23.x3.x4
+ y23.x22
+ y24.w
+ y1.t1
+ y1.x23
+ y1.y2.u2
+ y1.y23.w
- y3.t2 =
y3.x23
+ y33.x22
+ y35.x1
+ y1.t1
+ y1.x23
+ y1.y2.u2
+ y1.y23.w
+ y1.y24.x2
- y3.t1 =
y3.x23
+ y32.u3
+ x1.u3
+ y3.x1.x22
+ y33.x1.x2
+ y1.t1
+ y1.x23
- x1.u2 =
y1.t1
+ y1.x23
+ y1.y2.u2
+ y1.y2.x3.w
+ y1.y24.x2
- x1.u1 =
y3.x1.x22
+ y33.x1.x2
+ y1.y2.x3.w
- y1.t2 =
y1.t1
+ y1.x23
+ y1.y2.u2
+ y1.y23.w
- w.u3 =
x2.t2
+ x2.t1
+ x23.x3
+ y3.x2.u3
+ y2.x2.u2
+ y2.x2.x4.w
+ y2.x22.w
+ y22.x22.x4
+ y22.x23
+ y23.u3
+ y23.x2.w
+ y24.x2.x3
+ y24.x22
+ x1.x23
+ y3.x1.u3
+ y32.x1.x22
+ y34.x1.x2
+ y1.x22.w
+ y1.y2.t1
+ y1.y22.u2
+ y1.y22.x3.w
+ y1.y24.w
- w.u1 =
x3.t2
+ x3.t1
+ x22.x32
+ y33.u3
+ y2.x3.u2
+ y2.x32.w
+ y2.x22.w
+ y22.t2
+ y22.t1
+ y22.x2.x32
+ y22.x22.x4
+ y22.x22.x3
+ y23.u3
+ y23.u2
+ y23.u1
+ y23.x4.w
+ y24.x3.x4
+ y24.x2.x4
+ y24.x22
+ x1.x23
+ y3.x1.u3
+ y32.x1.x22
+ y36.x1
+ y1.x32.w
+ y1.x22.w
+ y1.y2.t1
+ y1.y25.x2
- x4.t2 =
y2.x2.u3
+ y2.x2.u2
+ y2.x2.u1
+ y2.x2.x3.w
+ y22.t2
+ y22.t1
+ y22.x22.x4
+ y22.x23
+ y23.u2
+ y23.x3.w
+ y24.x3.x4
+ y24.x2.x4
+ y24.x22
+ y25.w
+ x1.x23
+ y32.x1.x22
+ y1.x22.w
+ y1.y2.t1
+ y1.y22.u2
+ y1.y22.x3.w
+ y1.y24.w
+ y1.y25.x2
- x4.t1 =
x23.x4
+ y2.x2.u2
+ y2.x2.u1
+ y2.x22.w
+ y22.t1
+ y22.x2.x32
+ y22.x22.x4
+ y22.x22.x3
+ y22.x23
+ y23.u2
+ y24.x3.x4
+ y24.x2.x4
+ y24.x2.x3
+ y24.x22
+ y26.x2
+ y3.x1.u3
+ y1.y2.t1
+ y1.y22.x3.w
- x1.t2 =
x1.x23
+ y32.x1.x22
+ y1.x22.w
+ y1.y2.t1
+ y1.y22.u2
- x1.t1 =
x1.x23
+ y3.x1.u3
+ y1.y22.x3.w
+ y1.y25.x2
- w.t2 =
w.t1
+ x2.x3.u1
+ x22.u1
+ x22.x3.w
+ y3.x24
+ y35.x22
+ y2.w.u2
+ y2.x2.x33
+ y2.x22.x32
+ y2.x23.x3
+ y2.x24
+ y22.x2.u3
+ y22.x2.x4.w
+ y22.x2.x3.w
+ y23.t2
+ y23.t1
+ y23.x22.x4
+ y23.x22.x3
+ y23.x23
+ y24.u3
+ y24.u2
+ y24.x4.w
+ y24.x3.w
+ y25.x3.x4
+ y26.w
+ x1.x2.u3
+ y32.x1.u3
+ y1.y2.x32.w
+ y1.y23.x3.w
+ y1.y26.x2
- u32 =
x23.x32
+ x25
+ y3.x22.u3
+ y32.x24
+ y35.u3
+ y22.x22.x32
+ y22.x24
+ y3.x1.x2.u3
+ y32.x1.x23
+ y33.x1.u3
+ y38.x1
+ y1.y24.x3.w
+ y1.y27.x2
+ y32.r
- u2.u3 =
x2.x3.t1
+ x22.t2
+ x22.x33
+ x24.x3
+ x25
+ y32.x24
+ y33.x2.u3
+ y36.x22
+ y2.x22.u3
+ y2.x22.u2
+ y2.x22.x4.w
+ y2.x23.w
+ y22.x23.x4
+ y22.x24
+ y23.x2.u3
+ y23.x2.u1
+ y23.x22.w
+ y24.x22.x4
+ y24.x23
+ y25.x2.w
+ y3.x1.x2.u3
+ y32.x1.x23
+ y1.y22.x32.w
+ y1.y23.t1
+ y1.y24.u2
+ y1.y24.x3.w
+ y1.y26.w
- u22 =
x22.x33
+ x23.x32
+ y34.x23
+ y36.x22
+ y2.x32.u2
+ y2.x32.u1
+ y2.x33.w
+ y2.x2.x3.u2
+ y2.x2.x3.u1
+ y2.x2.x32.w
+ y22.x3.t2
+ y22.x3.t1
+ y22.x2.t1
+ y22.x23.x4
+ y22.x24
+ y23.x2.u1
+ y23.x2.x3.w
+ y24.t2
+ y24.x22.x3
+ y24.x23
+ y25.u1
+ y26.x3.x4
+ y27.w
+ y28.x2
+ y1.x32.u2
+ y1.x33.w
+ y1.y2.x3.t1
+ y1.y22.x3.u2
+ y1.y22.x32.w
+ y1.y26.w
+ y22.r
- u1.u3 =
x22.x33
+ x24.x3
+ y3.x22.u3
+ y32.x24
+ y33.x2.u3
+ y36.x22
+ y2.x2.x3.u1
+ y2.x22.u3
+ y2.x22.u1
+ y22.x2.t2
+ y22.x2.t1
+ y22.x23.x3
+ y23.x2.u2
+ y23.x2.x4.w
+ y23.x2.x3.w
+ y24.x22.x4
+ y24.x23
+ y25.u3
+ y25.x2.w
+ y26.x2.x3
+ y26.x22
+ y1.y2.x3.t1
+ y1.y22.x3.u2
+ y1.y22.x32.w
+ y1.y24.x3.w
+ y1.y27.x2
- u1.u2 =
x32.t1
+ x2.x3.t2
+ x2.x34
+ x23.x32
+ x24.x3
+ y34.x23
+ y35.u3
+ y38.x2
+ y2.x32.u2
+ y2.x22.u2
+ y2.x22.u1
+ y2.x22.x3.w
+ y22.w.u2
+ y22.x2.t2
+ y22.x23.x4
+ y23.x3.u1
+ y23.x2.u3
+ y23.x2.u1
+ y23.x2.x4.w
+ y24.x2.x32
+ y24.x22.x3
+ y25.u3
+ y25.x3.w
+ y26.x2.x3
+ y33.x1.u3
+ y34.x1.x22
+ y1.x33.w
+ y1.y2.x3.t1
+ y1.y22.x3.u2
+ y1.y2.r
- u12 =
x2.x34
+ x23.x32
+ y32.x24
+ y34.x23
+ y36.x22
+ y38.x2
+ y22.x24
+ y24.x2.x32
+ y24.x22.x3
+ y24.x23
+ y26.x2.x3
+ y1.x33.w
+ y1.x23.w
+ y1.y27.x2
- u3.t2 =
x22.x3.u2
+ x22.x3.u1
+ x22.x32.w
+ x23.u3
+ x23.u2
+ x23.x3.w
+ y32.x22.u3
+ y33.x24
+ y35.x23
+ y2.x2.x3.t1
+ y2.x22.t1
+ y2.x23.x32
+ y2.x24.x4
+ y22.x2.x3.u2
+ y22.x2.x32.w
+ y22.x22.u3
+ y22.x22.u2
+ y22.x22.x3.w
+ y22.x23.w
+ y24.x2.u3
+ y24.x2.u1
+ y24.x2.x3.w
+ y24.x22.w
+ y25.x22.x4
+ y25.x22.x3
+ y26.x2.w
+ y3.x1.x24
+ y34.x1.u3
+ y35.x1.x22
+ y1.x25
+ y1.y23.x32.w
+ y1.y24.t1
+ y1.y25.u2
+ y1.y25.x3.w
+ y1.y27.w
+ y1.y28.x2
- u3.t1 =
x22.x3.u2
+ x22.x3.u1
+ x23.u3
+ x23.u2
+ x23.u1
+ x23.x3.w
+ x24.w
+ y32.x22.u3
+ y33.x24
+ y36.u3
+ y2.x22.x33
+ y2.x24.x3
+ y22.x2.x3.u2
+ y22.x22.u3
+ y22.x22.u2
+ y23.x22.x32
+ y23.x23.x3
+ y24.x2.u3
+ y24.x2.u1
+ y25.x22.x4
+ y25.x23
+ y26.x2.w
+ y3.x1.x24
+ y33.x1.x23
+ y39.x1
+ y1.y23.x32.w
+ y1.y24.t1
+ y1.y25.u2
+ y1.y25.x3.w
+ y1.y27.w
+ y1.y28.x2
+ y33.r
+ y3.x1.r
- u2.t2 =
x3.w.t1
+ x2.x32.u2
+ x2.x33.w
+ x22.x32.w
+ x23.u2
+ x23.x3.w
+ y2.x32.t2
+ y2.x2.w.u2
+ y2.x2.x3.t2
+ y2.x22.t2
+ y2.x24.x4
+ y2.x24.x3
+ y2.x25
+ y22.w.t1
+ y22.x33.w
+ y22.x22.u2
+ y22.x22.x3.w
+ y22.x23.w
+ y23.x3.t1
+ y23.x2.t1
+ y23.x2.x33
+ y23.x23.x3
+ y23.x24
+ y24.x3.u2
+ y24.x32.w
+ y24.x2.u3
+ y24.x2.u2
+ y24.x2.u1
+ y24.x2.x4.w
+ y24.x2.x3.w
+ y24.x22.w
+ y25.t2
+ y25.t1
+ y25.x2.x32
+ y25.x22.x4
+ y25.x22.x3
+ y26.u2
+ y26.u1
+ y26.x3.w
+ y26.x2.w
+ y27.x3.x4
+ y27.x2.x4
+ y32.x1.x2.u3
+ y33.x1.x23
+ y34.x1.u3
+ y37.x1.x2
+ y1.x32.t1
+ y1.x25
+ y1.y2.x32.u2
+ y1.y23.x32.w
+ y1.y24.t1
+ y1.y27.w
+ y1.y28.x2
+ y2.x4.r
+ y1.x4.r
+ y1.y22.r
- u2.t1 =
x2.w.t1
+ x2.x32.u2
+ x22.x3.u2
+ x22.x3.u1
+ x22.x32.w
+ x23.u2
+ x23.u1
+ x23.x3.w
+ x24.w
+ y3.x25
+ y35.x23
+ y2.x32.t2
+ y2.x2.x3.t2
+ y2.x22.t1
+ y2.x23.x32
+ y2.x24.x4
+ y22.x32.u2
+ y22.x32.u1
+ y22.x2.x3.u2
+ y22.x2.x3.u1
+ y22.x22.u3
+ y22.x22.u2
+ y22.x22.x4.w
+ y22.x22.x3.w
+ y23.x2.t2
+ y23.x2.t1
+ y24.x3.u2
+ y24.x2.x3.w
+ y25.t1
+ y25.x2.x32
+ y25.x23
+ y26.u3
+ y26.u2
+ y26.x2.w
+ y27.x2.x4
+ y27.x22
+ y28.w
+ y29.x2
+ x1.x22.u3
+ y3.x1.x24
+ y32.x1.x2.u3
+ y35.x1.x22
+ y1.y2.x32.u2
+ y1.y2.x33.w
+ y1.y23.x3.u2
+ y1.y25.u2
+ y1.y25.x3.w
+ y1.y28.x2
+ y2.x4.r
+ y23.r
+ y1.y22.r
- u1.t2 =
x2.x32.u2
+ x2.x32.u1
+ x2.x33.w
+ x22.x3.u2
+ x22.x32.w
+ x23.u1
+ y33.x24
+ y37.x22
+ y2.x32.t2
+ y2.x32.t1
+ y2.x2.x3.t2
+ y2.x2.x3.t1
+ y2.x22.t2
+ y2.x22.x33
+ y2.x23.x32
+ y2.x24.x3
+ y2.x25
+ y22.w.t1
+ y22.x32.u2
+ y22.x33.w
+ y22.x2.x3.u2
+ y22.x2.x3.u1
+ y22.x2.x32.w
+ y22.x22.u2
+ y22.x22.u1
+ y22.x22.x3.w
+ y22.x23.w
+ y23.w.u2
+ y23.x2.t2
+ y23.x2.t1
+ y23.x2.x33
+ y23.x23.x3
+ y24.x3.u1
+ y24.x32.w
+ y24.x2.u3
+ y24.x2.u2
+ y24.x2.u1
+ y24.x2.x4.w
+ y24.x2.x3.w
+ y24.x22.w
+ y25.t2
+ y25.t1
+ y25.x22.x4
+ y25.x23
+ y26.u3
+ y26.u2
+ y26.x4.w
+ y27.x3.x4
+ y28.w
+ y33.x1.x23
+ y35.x1.x22
+ y1.x32.t1
+ y1.x25
+ y1.y2.x32.u2
+ y1.y2.x33.w
+ y1.y22.x3.t1
+ y1.y24.t1
+ y1.y25.u2
+ y1.y25.x3.w
+ y1.y27.w
+ y1.x4.r
- u1.t1 =
x2.x32.u2
+ x2.x32.u1
+ x22.x3.u2
+ x22.x3.u1
+ x22.x32.w
+ x23.u1
+ x23.x3.w
+ y32.x22.u3
+ y33.x24
+ y34.x2.u3
+ y37.x22
+ y2.x32.t1
+ y2.x2.x3.t1
+ y2.x2.x34
+ y2.x22.t1
+ y2.x24.x3
+ y2.x25
+ y22.w.t1
+ y22.x32.u2
+ y22.x2.x3.u2
+ y22.x22.u2
+ y23.x2.t1
+ y23.x2.x33
+ y23.x22.x32
+ y24.x3.u1
+ y24.x2.u2
+ y24.x2.u1
+ y24.x22.w
+ y25.x2.x32
+ y25.x22.x3
+ y26.x3.w
+ y26.x2.w
+ y27.x22
+ x1.x22.u3
+ y32.x1.x2.u3
+ y1.x32.t1
+ y1.x25
+ y1.y2.x32.u2
+ y1.y2.x33.w
+ y1.y22.x3.t1
+ y1.y23.x3.u2
+ y1.y23.x32.w
+ y1.y24.t1
+ y1.y25.u2
+ y1.y27.w
+ y1.x4.r
+ y1.y22.r
- t22 =
x24.x32
+ x26
+ y2.x2.x32.u2
+ y2.x2.x32.u1
+ y2.x2.x33.w
+ y2.x22.x3.u2
+ y2.x22.x3.u1
+ y2.x22.x32.w
+ y22.x2.x3.t2
+ y22.x2.x3.t1
+ y22.x2.x34
+ y22.x22.t1
+ y22.x23.x32
+ y22.x24.x4
+ y22.x24.x3
+ y23.x22.u1
+ y23.x22.x3.w
+ y24.x2.t2
+ y24.x2.x33
+ y24.x22.x32
+ y24.x23.x3
+ y24.x24
+ y25.x2.u1
+ y26.x2.x32
+ y26.x22.x4
+ y27.u3
+ y27.x2.w
+ y28.x22
+ y1.y23.x3.t1
+ y1.y24.x3.u2
+ y1.y25.t1
+ y1.y26.u2
+ y22.x2.r
+ y1.y2.x2.r
- t1.t2 =
x2.x3.w.u2
+ x2.x32.t2
+ x2.x32.t1
+ x22.w.u2
+ x22.x3.t2
+ x22.x34
+ x23.t2
+ x23.t1
+ x23.x33
+ x25.x3
+ x26
+ y33.x22.u3
+ y34.x24
+ y35.x2.u3
+ y38.x22
+ y2.x2.x32.u2
+ y2.x2.x32.u1
+ y2.x2.x33.w
+ y2.x22.x3.u2
+ y2.x22.x32.w
+ y2.x23.u1
+ y2.x23.x3.w
+ y2.x24.w
+ y22.x3.w.u2
+ y22.x32.t2
+ y22.x2.x3.t1
+ y22.x22.t1
+ y22.x25
+ y23.x33.w
+ y23.x2.x3.u2
+ y23.x22.u3
+ y23.x22.u2
+ y23.x22.u1
+ y23.x22.x4.w
+ y23.x22.x3.w
+ y24.w.u2
+ y24.x3.t1
+ y24.x2.t2
+ y24.x2.t1
+ y24.x2.x33
+ y24.x23.x4
+ y24.x24
+ y25.x3.u2
+ y25.x32.w
+ y25.x2.u2
+ y26.t2
+ y26.t1
+ y26.x2.x32
+ y26.x22.x4
+ y26.x23
+ y27.u2
+ y27.u1
+ y27.x3.w
+ y28.x3.x4
+ y28.x2.x4
+ y3.x1.x22.u3
+ y32.x1.x24
+ y33.x1.x2.u3
+ y35.x1.u3
+ y38.x1.x2
+ y1.y2.x32.t1
+ y1.y22.x32.u2
+ y1.y24.x32.w
+ y1.y25.t1
+ y1.y28.w
+ y22.x4.r
+ y22.x2.r
+ y1.y2.x2.r
+ y1.y23.r
- t12 =
x22.x34
+ x23.x33
+ x24.x32
+ x25.x3
+ x26
+ y33.x22.u3
+ y37.u3
+ y38.x22
+ y2.x2.x32.u2
+ y2.x2.x32.u1
+ y2.x2.x33.w
+ y2.x22.x3.u2
+ y2.x22.x3.u1
+ y2.x22.x32.w
+ y22.x2.x3.t2
+ y22.x2.x3.t1
+ y22.x22.t1
+ y22.x22.x33
+ y22.x24.x4
+ y23.x32.u2
+ y23.x32.u1
+ y23.x33.w
+ y23.x2.x3.u2
+ y23.x2.x3.u1
+ y23.x2.x32.w
+ y23.x22.u1
+ y23.x22.x3.w
+ y24.x3.t2
+ y24.x3.t1
+ y24.x2.t2
+ y24.x2.t1
+ y24.x23.x4
+ y24.x24
+ y25.x2.x3.w
+ y26.t2
+ y26.x2.x32
+ y26.x22.x4
+ y26.x22.x3
+ y26.x23
+ y27.u3
+ y27.u1
+ y27.x2.w
+ y28.x3.x4
+ y28.x2.x3
+ y28.x22
+ y29.w
+ y210.x2
+ y33.x1.x2.u3
+ y34.x1.x23
+ y35.x1.u3
+ y310.x1
+ y1.y22.x32.u2
+ y1.y24.x32.w
+ y1.y25.t1
+ y1.y26.u2
+ y34.r
+ y22.x2.r
+ y24.r
+ y1.y2.x2.r
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.y2.x4 =
y1.y2.x2
- y1.x3.x4 =
y1.y2.w
- y1.x2.x4 =
y1.y22.x2
- y1.x4.w =
y1.y22.w
- y1.y2.x22 =
y1.y23.x2
- y1.y2.x2.w =
y1.y23.w
- y1.x2.u2 =
y1.x22.w
+ y1.y2.t1
+ y1.y22.u2
+ y1.y22.x3.w
+ y1.y24.w
- y1.w.u2 =
y1.x3.t1
+ y1.x24
+ y1.y2.x3.u2
+ y1.y2.x32.w
+ y1.y26.x2
- y1.x2.t1 =
y1.x24
+ y1.y23.x3.w
+ y1.y26.x2
- y1.w.t1 =
y1.x23.w
+ y1.y22.x32.w
+ y1.y26.w
This cohomology ring was obtained from a calculation
out to degree 14. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 12
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
x3
in degree 2
- h3 =
x4
+ x2
+ y22
in degree 2
- h4 =
y2
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 6, 8, 9.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
y32
in degree 2
-
x1
in degree 2
-
w
in degree 3
-
y3.x1
in degree 3
-
y1.w
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
x2.w
in degree 5
-
t2
in degree 6
-
t1
in degree 6
-
y3.u3
in degree 6
-
x1.u3
in degree 7
-
w.u2
in degree 8
-
y3.x1.u3
in degree 8
-
w.t1
in degree 9
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y3
+ y1
in degree 1
-
y32
+ y1.y3
in degree 2
-
y3.x1
+ y1.x1
in degree 3
-
y1.h2
in degree 3
-
y1.w
in degree 4
-
x1.h2
in degree 4
-
u3
+ h5
in degree 5
-
y3.u3
+ y1.u3
in degree 6
-
x1.u3
+ x1.h5
in degree 7
-
u1.h2
+ w.h4
+ x2.h5
in degree 7
-
y3.x1.u3
+ y1.x1.u3
in degree 8
-
t2.h2
+ t1.h2
+ u2.h3
+ x2.w.h3
+ w.h5
+ x2.h6
+ h8
in degree 8
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.y22
+ y1.h
in degree 3
-
y1.w.h
in degree 6