Small group number 645 of order 128
G is the group 128gp645
G has 3 minimal generators, rank 4 and exponent 4.
The centre has rank 1.
There are 3 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
4, 4, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 15 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2, a nilpotent element
- x2 in degree 2
- x3 in degree 2
- x4 in degree 2
- w in degree 3
- v in degree 4
- u1 in degree 5
- u2 in degree 5
- u3 in degree 5
- u4 in degree 5
- t in degree 6
- r in degree 8, a regular element
There are 61 minimal relations:
- y2.y3 =
y1.y2
- y1.y3 =
0
- y12 =
0
- y3.x3 =
y2.x4
+ y1.x3
+ y1.x2
- y3.x1 =
0
- y2.x1 =
0
- y1.x1 =
0
- x1.x4 =
x1.x3
+ y1.w
- y1.y2.x2 =
0
- x12 =
0
- y3.v =
y3.x42
+ y3.x2.x4
+ y33.x4
+ y33.x2
+ y2.x2.x4
+ y1.x2.x3
+ y1.x22
- y2.v =
y2.x3.x4
- y2.x42 =
y2.x3.x4
+ y1.x2.x3
+ y1.x22
- x1.w =
y1.x42
+ y1.x3.x4
+ y1.x2.x4
+ y1.x22
- y1.v =
y1.x42
+ y1.x2.x3
+ y1.x22
- w2 =
x43
+ x32.x4
+ x2.x42
+ x2.x3.x4
+ x22.x4
+ x22.x3
+ y3.u1
+ y3.x4.w
+ y3.x2.w
+ y32.x42
+ y32.x2.x4
+ y33.w
+ y34.x2
+ x1.x2.x3
+ x1.x22
+ y1.x4.w
- y3.u4 =
y3.x4.w
+ y3.x2.w
+ y32.x2.x4
+ y32.x22
+ y34.x4
+ y34.x2
+ x1.x2.x3
+ x1.x22
+ y1.u2
+ y1.x4.w
+ y1.x3.w
+ y1.x2.w
- y3.u3 =
y3.u1
+ y3.x2.w
+ y32.x42
+ y33.w
+ y34.x4
+ y36
+ y1.u3
+ y1.x3.w
- y3.u2 =
y3.x4.w
+ y33.w
+ y34.x2
+ y36
+ x1.x2.x3
+ x1.x22
+ y1.x3.w
+ y1.x2.w
- y2.u4 =
y2.x3.w
+ y22.x2.x3
+ x1.x2.x3
+ x1.x22
+ y1.u3
+ y1.x2.w
- y2.u2 =
y2.x3.w
+ y2.x2.w
+ y22.x2.x3
+ x1.x2.x3
+ x1.x22
+ y1.u2
+ y1.x4.w
+ y1.x3.w
+ y1.x2.w
- y2.u1 =
y23.w
+ y1.u3
+ y1.x2.w
- y2.x4.w =
y1.u2
+ y1.x4.w
+ y1.x3.w
+ y1.x2.w
- x1.v =
x1.x32
+ y1.u2
+ y1.x2.w
- y1.u4 =
y1.x4.w
+ y1.x2.w
- y1.u1 =
y1.x3.w
+ y1.x2.w
- w.v =
x4.u2
+ x3.u2
+ x32.w
+ x2.x4.w
+ x2.x3.w
+ y32.x2.w
+ y33.x2.x4
+ y35.x4
+ y2.x2.x32
+ y2.x22.x4
+ y1.x43
+ y1.x32.x4
+ y1.x2.x42
+ y1.x2.x32
+ y1.x22.x4
+ y1.x23
- x4.u3 =
x4.u2
+ x4.u1
+ x42.w
+ x3.u4
+ x3.u1
+ x3.x4.w
+ x32.w
+ x2.u4
+ x2.u2
+ x2.x4.w
+ x22.w
+ y3.x43
+ y3.x22.x4
+ y3.x23
+ y32.x2.w
+ y33.x42
+ y35.x2
+ y2.x32.x4
+ y2.x2.x32
+ y2.x22.x4
+ y22.x3.w
+ x1.u2
+ y1.x2.x42
+ y1.x22.x3
- y3.t =
y3.x2.x42
+ y3.x23
+ y33.x42
+ y33.x2.x4
+ y35.x4
+ y35.x2
+ y2.x32.x4
+ x1.u2
+ y1.x43
+ y1.x3.x42
+ y1.x32.x4
+ y1.x2.x42
+ y1.x22.x3
+ y1.x23
- y2.t =
y2.x32.x4
+ y2.x2.x32
+ y2.x23
+ y22.x2.w
+ y23.x2.x3
+ x1.u2
+ y1.x43
+ y1.x32.x4
+ y1.x2.x32
+ y1.x23
+ y1.y2.u3
- y2.x2.x3.x4 =
y2.x22.x4
+ x1.u2
+ y1.x43
+ y1.x32.x4
+ y1.x2.x3.x4
+ y1.x22.x4
- x1.u4 =
x1.u2
+ y1.x3.x42
+ y1.x32.x4
+ y1.x2.x3.x4
+ y1.x23
- x1.u3 =
y1.x2.x42
+ y1.x2.x32
+ y1.x22.x3
+ y1.x23
- x1.u1 =
y1.x3.x42
+ y1.x32.x4
+ y1.x2.x42
+ y1.x22.x4
+ y1.x22.x3
+ y1.x23
- y1.t =
y1.x3.x42
+ y1.x2.x42
+ y1.x2.x3.x4
+ y1.x2.x32
+ y1.x23
- v2 =
x44
+ x2.x3.x42
+ x2.x32.x4
+ x22.x42
+ x22.x3.x4
+ y34.x42
+ y34.x22
+ x1.x2.x32
+ x1.x22.x3
+ y1.x3.x4.w
- w.u4 =
x4.t
+ x44
+ x3.t
+ x3.x43
+ x2.x4.v
+ x2.x33
+ x22.v
+ x22.x32
+ x23.x4
+ x23.x3
+ y3.x4.u1
+ y3.x42.w
+ y3.x2.u1
+ y3.x2.x4.w
+ y32.x22.x4
+ y32.x23
+ y34.x42
+ y34.x22
+ y22.x2.x32
+ y1.x42.w
+ y1.x3.u3
+ y1.x3.u2
+ y1.x3.x4.w
+ y1.x32.w
+ y1.x2.x4.w
+ y1.x2.x3.w
- w.u2 =
x42.v
+ x3.x4.v
+ x32.x42
+ x33.x4
+ x2.x4.v
+ x2.x43
+ x22.v
+ x22.x42
+ x22.x3.x4
+ x22.x32
+ x23.x4
+ x23.x3
+ y3.x4.u1
+ y3.x42.w
+ y3.x2.x4.w
+ y32.x43
+ y32.x22.x4
+ y32.x23
+ y33.u1
+ y34.x42
+ y36.x2
+ y2.x2.x3.w
+ x1.x2.x32
+ x1.x23
+ y1.x3.x4.w
+ y1.x32.w
+ y1.x2.u2
+ y1.x22.w
- x1.t =
x1.x33
+ x1.x22.x3
+ x1.x23
+ y1.x3.u2
+ y1.x2.x4.w
+ y1.x2.x3.w
- y1.x2.u3 =
y1.x2.x3.w
- v.u4 =
x42.u4
+ x42.u2
+ x43.w
+ x3.x4.u4
+ x3.x4.u1
+ x32.u4
+ x32.u2
+ x32.u1
+ x32.x4.w
+ x2.x4.u4
+ x2.x4.u2
+ x2.x42.w
+ x2.x3.u4
+ x2.x3.u2
+ x2.x3.x4.w
+ x2.x32.w
+ x22.x3.w
+ y32.x2.x4.w
+ y32.x22.w
+ y33.x22.x4
+ y33.x23
+ y35.x2.x4
+ y35.x22
+ y22.x32.w
+ y1.x44
+ y1.x3.x43
+ y1.x32.x42
+ y1.x33.x4
+ y1.x2.x32.x4
+ y1.x22.x32
+ y1.x23.x3
+ y1.x24
- v.u3 =
x42.u2
+ x42.u1
+ x43.w
+ x3.x4.u2
+ x3.x42.w
+ x32.u4
+ x32.u2
+ x32.u1
+ x32.x4.w
+ x2.x4.u2
+ x2.x4.u1
+ x2.x3.u4
+ x2.x3.u1
+ x2.x3.x4.w
+ x22.x4.w
+ y3.x44
+ y3.x2.x43
+ y32.x4.u1
+ y32.x2.u1
+ y32.x2.x4.w
+ y32.x22.w
+ y33.x2.x42
+ y33.x22.x4
+ y34.x4.w
+ y34.x2.w
+ y35.x42
+ y35.x2.x4
+ y37.x4
+ y37.x2
+ y2.x33.x4
+ y2.x22.x32
+ y22.x32.w
+ y22.x2.x3.w
+ x1.x3.u2
+ y1.x44
+ y1.x33.x4
+ y1.x2.x43
+ y1.x2.x33
+ y1.x23.x4
+ y1.x24
- v.u2 =
x43.w
+ x3.x42.w
+ x32.u2
+ x32.x4.w
+ x33.w
+ x2.x4.u2
+ x2.x3.u2
+ x2.x3.x4.w
+ x22.x3.w
+ y32.x2.x4.w
+ y33.x2.x42
+ y34.x4.w
+ y34.x2.w
+ y35.x42
+ y35.x2.x4
+ y35.x22
+ y37.x4
+ y37.x2
+ y2.x2.x33
+ y2.x22.x32
+ x1.x2.u2
+ y1.x44
+ y1.x33.x4
+ y1.x2.x43
+ y1.x2.x32.x4
+ y1.x2.x33
+ y1.x22.x3.x4
+ y1.x23.x4
+ y1.x24
- v.u1 =
x42.u1
+ x3.x4.u4
+ x3.x4.u1
+ x3.x42.w
+ x32.u4
+ x32.u1
+ x33.w
+ x2.x4.u4
+ x2.x4.u1
+ x2.x42.w
+ x2.x3.u2
+ x2.x3.u1
+ x2.x3.x4.w
+ x2.x32.w
+ x22.u4
+ x22.u2
+ x22.x4.w
+ x22.x3.w
+ x23.w
+ y3.x22.x42
+ y3.x24
+ y32.x4.u1
+ y32.x2.u1
+ y32.x22.w
+ y33.x2.x42
+ y35.x22
+ y2.x2.x33
+ y2.x22.x32
+ y22.x32.w
+ y22.x2.x3.w
+ x1.x2.u2
+ y1.x3.x43
+ y1.x32.x42
+ y1.x2.x43
+ y1.x2.x32.x4
+ y1.x2.x33
+ y1.x22.x42
+ y1.x23.x4
+ y1.x24
- w.t =
x42.u4
+ x43.w
+ x3.x4.u4
+ x2.x4.u4
+ x2.x4.u2
+ x2.x32.w
+ x22.u4
+ x22.u2
+ x22.x4.w
+ y3.x2.x43
+ y3.x24
+ y32.x42.w
+ y32.x22.w
+ y33.x43
+ y33.x22.x4
+ y34.x4.w
+ y34.x2.w
+ y35.x2.x4
+ y35.x22
+ y2.x23.x4
+ y2.x23.x3
+ y22.x2.x3.w
+ y1.x2.x43
+ y1.x2.x32.x4
+ y1.x2.x33
+ y1.x22.x3.x4
+ y1.x22.x32
+ y1.x23.x3
- u42 =
x45
+ x32.x43
+ x2.x44
+ x2.x3.x43
+ x2.x32.x42
+ x2.x33.x4
+ x22.x33
+ x23.x42
+ x23.x3.x4
+ x24.x4
+ y3.x42.u1
+ y3.x43.w
+ y3.x2.x42.w
+ y3.x22.u1
+ y3.x22.x4.w
+ y3.x23.w
+ y32.x44
+ y32.x2.x43
+ y32.x23.x4
+ y32.x24
+ y33.x42.w
+ y33.x22.w
+ y34.x2.x42
+ y34.x23
+ y36.x42
+ y36.x22
+ y22.x22.x32
+ x1.x23.x3
+ x1.x24
+ y1.x43.w
+ y1.x32.x4.w
+ y1.x2.x3.x4.w
+ y1.x2.x32.w
+ y1.x22.x3.w
- u3.u4 =
x4.w.u1
+ x43.v
+ x45
+ x3.w.u3
+ x3.x4.t
+ x3.x44
+ x32.t
+ x32.x43
+ x33.v
+ x33.x42
+ x2.w.u1
+ x2.x42.v
+ x2.x44
+ x2.x3.x4.v
+ x2.x34
+ x22.x4.v
+ x22.x3.x42
+ x23.v
+ x23.x32
+ y3.x43.w
+ y3.x22.x4.w
+ y32.x22.x42
+ y32.x24
+ y34.x22.x4
+ y34.x23
+ y35.x4.w
+ y35.x2.w
+ y36.x42
+ y36.x2.x4
+ y38.x4
+ y38.x2
+ y2.x2.x3.u3
+ y2.x2.x32.w
+ y22.x2.x33
+ y22.x23.x3
+ x1.x2.x33
+ x1.x22.x32
+ y1.x33.w
+ y1.x2.x42.w
+ y1.x2.x3.x4.w
+ y1.x2.x32.w
+ y1.x22.u2
+ y1.x22.x4.w
+ y1.x22.x3.w
+ y1.x23.w
+ y1.y24.u3
+ y1.y2.r
- u32 =
x2.x32.x42
+ x2.x34
+ x22.x43
+ x22.x32.x4
+ x23.x3.x4
+ x23.x32
+ x24.x4
+ x24.x3
+ y3.x2.x4.u1
+ y3.x22.u1
+ y3.x22.x4.w
+ y3.x23.w
+ y33.x2.u1
+ y33.x2.x4.w
+ y33.x22.w
+ y34.x2.x42
+ y35.x2.w
+ y37.w
+ y2.x32.u3
+ y2.x2.x3.u3
+ y2.x2.x32.w
+ y2.x22.x3.w
+ y22.x22.x32
+ y22.x23.x3
+ y23.x2.u3
+ y23.x22.w
+ y24.x22.x3
+ y25.u3
+ y25.x3.w
+ y27.w
+ x1.x23.x3
+ x1.x24
+ y1.x32.u3
+ y1.x32.x4.w
+ y1.x33.w
+ y1.x2.x3.x4.w
+ y1.x22.x4.w
+ y32.r
+ y22.r
- u2.u4 =
x42.t
+ x43.v
+ x3.w.u1
+ x3.x4.t
+ x32.x4.v
+ x33.x42
+ x34.x4
+ x2.x42.v
+ x2.x44
+ x2.x3.x43
+ x2.x33.x4
+ x22.x4.v
+ x22.x3.v
+ x22.x33
+ x23.v
+ x23.x32
+ x24.x4
+ y3.x42.u1
+ y3.x43.w
+ y3.x2.x4.u1
+ y3.x2.x42.w
+ y32.x2.x43
+ y32.x22.x42
+ y32.x23.x4
+ y32.x24
+ y33.x4.u1
+ y33.x42.w
+ y33.x2.u1
+ y33.x22.w
+ y34.x22.x4
+ y34.x23
+ y35.x4.w
+ y35.x2.w
+ y36.x2.x4
+ y36.x22
+ y38.x4
+ y38.x2
+ y2.x22.x3.w
+ x1.x2.x33
+ x1.x22.x32
+ y1.x3.x42.w
+ y1.x32.u2
+ y1.x2.x42.w
+ y1.x2.x32.w
+ y1.x22.u2
- u2.u3 =
x4.w.u1
+ x43.v
+ x45
+ x3.w.u3
+ x3.x44
+ x32.x4.v
+ x32.x43
+ x33.x42
+ x2.w.u3
+ x2.w.u1
+ x2.x3.x43
+ x2.x32.x42
+ x22.x3.v
+ x22.x32.x4
+ x23.v
+ x23.x42
+ y3.x43.w
+ y3.x2.x4.u1
+ y3.x22.u1
+ y3.x23.w
+ y32.w.u1
+ y32.x2.x43
+ y32.x22.x42
+ y32.x24
+ y33.x4.u1
+ y33.x42.w
+ y33.x2.u1
+ y33.x2.x4.w
+ y34.x2.x42
+ y34.x23
+ y36.x2.x4
+ y37.w
+ y38.x4
+ y310
+ y2.x2.x3.u3
+ y22.x23.x3
+ x1.x2.x33
+ x1.x23.x3
+ y1.x3.x42.w
+ y1.x32.u2
+ y1.x33.w
+ y1.x2.x42.w
+ y1.x22.x3.w
+ y1.x23.w
- u22 =
x45
+ x34.x4
+ x2.x44
+ x2.x33.x4
+ x22.x43
+ x22.x3.x42
+ x22.x33
+ x24.x3
+ y3.x42.u1
+ y3.x43.w
+ y3.x2.x42.w
+ y32.x44
+ y32.x2.x43
+ y33.x42.w
+ y34.x43
+ y34.x22.x4
+ y35.u1
+ y35.x4.w
+ y35.x2.w
+ y36.x42
+ y36.x2.x4
+ y36.x22
+ y37.w
+ y38.x2
+ y310
+ y22.x22.x32
+ x1.x2.x33
+ x1.x22.x32
+ y1.x43.w
+ y1.x3.x42.w
+ y1.x33.w
+ y1.x22.x4.w
+ y1.x22.x3.w
- u1.u4 =
x4.w.u1
+ x3.w.u1
+ x3.x42.v
+ x3.x44
+ x32.x4.v
+ x34.x4
+ x2.w.u1
+ x2.x3.t
+ x2.x3.x43
+ x22.t
+ x22.x4.v
+ x22.x43
+ x22.x33
+ x23.v
+ x23.x42
+ x23.x32
+ x24.x4
+ x24.x3
+ x25
+ y3.x2.x4.u1
+ y3.x22.u1
+ y32.x23.x4
+ y32.x24
+ y33.x4.u1
+ y33.x2.u1
+ y34.x22.x4
+ y34.x23
+ y2.x22.x3.w
+ y2.x23.w
+ y22.x22.x32
+ y23.x2.x3.w
+ x1.x23.x3
+ x1.x24
+ y1.x32.x4.w
+ y1.x33.w
- u1.u3 =
x3.x4.t
+ x32.t
+ x32.x4.v
+ x33.v
+ x2.w.u1
+ x2.x4.t
+ x2.x3.t
+ x2.x3.x4.v
+ x2.x3.x43
+ x2.x32.v
+ x2.x32.x42
+ x2.x33.x4
+ x2.x34
+ x22.x43
+ x22.x33
+ x23.x42
+ x23.x32
+ x24.x4
+ x24.x3
+ y3.x42.u1
+ y3.x2.x4.u1
+ y32.w.u1
+ y32.x44
+ y32.x2.x43
+ y32.x23.x4
+ y33.x4.u1
+ y33.x2.u1
+ y33.x2.x4.w
+ y34.x43
+ y34.x2.x42
+ y34.x23
+ y35.x4.w
+ y36.x2.x4
+ y38.x2
+ y310
+ y2.x2.x32.w
+ y2.x22.x3.w
+ y22.w.u3
+ y22.x2.x33
+ y22.x22.x32
+ y22.x23.x3
+ y1.x32.x4.w
+ y1.x33.w
+ y1.x2.x3.x4.w
+ y1.x23.w
+ y1.y24.u3
+ y32.r
+ y1.y2.r
- u1.u2 =
x4.w.u1
+ x3.x4.t
+ x32.t
+ x33.x42
+ x34.x4
+ x2.x4.t
+ x2.x3.x43
+ x2.x33.x4
+ x2.x34
+ x22.t
+ x22.x43
+ x22.x3.v
+ x22.x3.x42
+ x23.v
+ x25
+ y32.w.u1
+ y32.x2.x43
+ y32.x24
+ y33.x2.u1
+ y34.x2.x42
+ y34.x23
+ y35.u1
+ y2.x2.x32.w
+ y2.x23.w
+ y22.x2.x33
+ y22.x22.x32
+ y23.x2.x3.w
+ x1.x23.x3
+ x1.x24
+ y1.x32.u3
+ y1.x32.x4.w
+ y1.x33.w
+ y1.x2.x42.w
+ y1.x2.x3.x4.w
+ y1.x22.x4.w
+ y1.x22.x3.w
+ y1.x23.w
- u12 =
x32.x43
+ x34.x4
+ x2.x3.x43
+ x2.x32.x42
+ x23.x42
+ x23.x3.x4
+ y3.x2.x4.u1
+ y32.x44
+ y32.x22.x42
+ y32.x23.x4
+ y33.x2.u1
+ y33.x2.x4.w
+ y34.x43
+ y34.x22.x4
+ y34.x23
+ y35.u1
+ y35.x4.w
+ y36.x2.x4
+ y38.x2
+ y310
+ y24.x22.x3
+ x1.x2.x33
+ x1.x23.x3
+ y1.x3.x42.w
+ y1.x32.x4.w
+ y1.x33.w
+ y1.x2.x32.w
+ y32.r
- v.t =
x42.t
+ x3.w.u1
+ x3.x4.t
+ x32.t
+ x32.x4.v
+ x32.x43
+ x33.x42
+ x34.x4
+ x2.x4.t
+ x2.x42.v
+ x2.x44
+ x2.x3.t
+ x2.x3.x43
+ x2.x32.v
+ x2.x32.x42
+ x2.x34
+ x22.x43
+ x22.x3.v
+ x22.x32.x4
+ x22.x33
+ x23.v
+ x23.x42
+ x23.x3.x4
+ x23.x32
+ x24.x4
+ x24.x3
+ y34.x43
+ y34.x22.x4
+ y36.x42
+ y36.x22
+ y2.x2.x32.w
+ y2.x22.x3.w
+ y22.x2.x33
+ x1.x22.x32
+ x1.x23.x3
+ y1.x32.u3
+ y1.x32.u2
+ y1.x32.x4.w
- u4.t =
x43.u4
+ x44.w
+ x3.x43.w
+ x2.x42.u4
+ x2.x42.u2
+ x2.x3.x4.u2
+ x2.x3.x4.u1
+ x2.x3.x42.w
+ x2.x32.u4
+ x2.x32.x4.w
+ x22.x3.u2
+ x22.x3.u1
+ x22.x3.x4.w
+ x22.x32.w
+ x23.u2
+ x23.x3.w
+ x24.w
+ y3.x2.x44
+ y3.x22.x43
+ y3.x24.x4
+ y3.x25
+ y32.x43.w
+ y32.x2.x42.w
+ y32.x22.x4.w
+ y32.x23.w
+ y33.x44
+ y33.x22.x42
+ y34.x42.w
+ y34.x22.w
+ y35.x43
+ y35.x22.x4
+ y37.x42
+ y37.x22
+ y22.x2.x32.w
+ y23.x22.x32
+ x1.x32.u2
+ x1.x2.x3.u2
+ x1.x22.u2
+ y1.x33.x42
+ y1.x34.x4
+ y1.x2.x44
+ y1.x2.x33.x4
+ y1.x22.x32.x4
+ y1.x22.x33
+ y1.x23.x42
+ y1.x23.x3.x4
+ y1.x23.x32
+ y1.x24.x4
- u3.t =
x3.x42.u2
+ x3.x42.u1
+ x3.x43.w
+ x32.x4.u2
+ x32.x42.w
+ x33.u4
+ x33.u2
+ x33.u1
+ x33.x4.w
+ x2.x42.u4
+ x2.x42.u2
+ x2.x42.u1
+ x2.x3.x4.u1
+ x2.x3.x42.w
+ x2.x32.u4
+ x2.x32.u3
+ x2.x32.u2
+ x2.x33.w
+ x22.x4.u2
+ x22.x42.w
+ x22.x3.u4
+ x22.x3.x4.w
+ x23.u3
+ y3.x2.x44
+ y3.x22.x43
+ y3.x23.x42
+ y32.x42.u1
+ y32.x2.x4.u1
+ y32.x2.x42.w
+ y33.x44
+ y33.x2.x43
+ y33.x23.x4
+ y34.x4.u1
+ y34.x42.w
+ y34.x2.u1
+ y34.x22.w
+ y35.x22.x4
+ y36.x4.w
+ y36.x2.w
+ y39.x4
+ y39.x2
+ y2.x2.w.u3
+ y2.x23.x32
+ y22.x33.w
+ y22.x2.x3.u3
+ x1.x32.u2
+ y1.x32.x43
+ y1.x2.x33.x4
+ y1.x2.x34
+ y1.x22.x32.x4
+ y1.x23.x42
+ y1.x23.x32
+ y1.y2.x32.u3
+ y1.y25.u3
+ y1.y22.r
- u2.t =
x43.u4
+ x44.w
+ x3.x42.u4
+ x3.x42.u1
+ x32.x4.u2
+ x32.x4.u1
+ x32.x42.w
+ x2.x42.u4
+ x2.x43.w
+ x2.x3.x4.u1
+ x2.x32.u2
+ x22.x4.u4
+ x22.x4.u2
+ x22.x42.w
+ x22.x3.u2
+ x22.x3.u1
+ x22.x3.x4.w
+ x22.x32.w
+ x23.u2
+ x23.x4.w
+ x23.x3.w
+ y3.x2.x44
+ y3.x24.x4
+ y32.x43.w
+ y32.x22.x4.w
+ y33.x44
+ y33.x22.x42
+ y36.x4.w
+ y36.x2.w
+ y37.x42
+ y37.x22
+ y39.x4
+ y39.x2
+ y2.x24.x4
+ y2.x24.x3
+ y22.x2.x32.w
+ y22.x22.x3.w
+ y23.x22.x32
+ y1.x3.x44
+ y1.x33.x42
+ y1.x2.x44
+ y1.x2.x33.x4
+ y1.x2.x34
+ y1.x22.x32.x4
+ y1.x23.x42
+ y1.x23.x3.x4
+ y1.x23.x32
+ y1.x25
- u1.t =
x3.x42.u2
+ x3.x43.w
+ x32.x4.u2
+ x32.x4.u1
+ x32.x42.w
+ x2.x42.u1
+ x2.x32.u1
+ x22.x4.u2
+ x22.x42.w
+ x22.x3.u4
+ x22.x3.u1
+ x22.x3.x4.w
+ x22.x32.w
+ x23.u4
+ x23.u2
+ x23.u1
+ x24.w
+ y3.x24.x4
+ y3.x25
+ y32.x42.u1
+ y32.x2.x4.u1
+ y32.x22.x4.w
+ y32.x23.w
+ y34.x4.u1
+ y34.x2.u1
+ y35.x22.x4
+ y35.x23
+ y2.x23.x32
+ y2.x24.x4
+ y22.x22.x3.w
+ y23.x23.x3
+ y24.x2.x3.w
+ x1.x32.u2
+ x1.x22.u2
+ y1.x3.x44
+ y1.x34.x4
+ y1.x2.x33.x4
+ y1.x2.x34
+ y1.x22.x33
+ y1.x23.x3.x4
+ y1.x23.x32
+ y1.x24.x4
+ y1.x24.x3
+ y1.x25
- t2 =
x32.x44
+ x2.x32.x43
+ x2.x33.x42
+ x22.x44
+ x22.x3.x43
+ x22.x33.x4
+ x22.x34
+ x24.x3.x4
+ x26
+ y34.x44
+ y34.x22.x42
+ y38.x42
+ y38.x22
+ y22.x24.x3
+ y24.x22.x32
+ x1.x2.x34
+ x1.x24.x3
+ y1.x32.x42.w
+ y1.x2.x32.x4.w
+ y1.x2.x33.w
+ y1.x22.x3.x4.w
+ y1.x22.x32.w
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y22.x4 =
y1.y2.x2
- y1.y2.x4 =
0
- y1.y2.w =
0
- y1.x4.u2 =
y1.x42.w
+ y1.x3.u2
+ y1.x32.w
+ y1.x2.x4.w
+ y1.x22.w
- y1.w.u3 =
y1.x2.x43
+ y1.x2.x33
+ y1.x22.x42
+ y1.x23.x4
+ y1.x23.x3
+ y1.x24
- y1.x2.x3.x42 =
y1.x2.x32.x4
+ y1.x22.x42
+ y1.x22.x3.x4
+ y1.x22.x32
+ y1.x24
- y1.x2.x3.u2 =
y1.x2.x32.w
+ y1.x22.u2
+ y1.x23.w
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 3.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
v
+ x3.x4
+ x32
+ x2.x3
+ x22
+ y32.x4
+ y32.x2
+ y34
+ y2.w
+ y22.x3
+ y24
in degree 4
- h3 =
t
+ x4.v
+ x43
+ x3.v
+ x3.x42
+ x32.x4
+ x2.x42
+ x22.x4
+ x22.x3
+ x23
+ y32.x42
+ y32.x2.x4
+ y32.x22
+ y34.x4
+ y34.x2
+ y22.x32
+ y22.x2.x3
+ y22.x22
+ y23.w
+ y24.x3
in degree 6
- h4 =
x3
+ y32
+ y22
in degree 2
The first
3 terms h1, h2, h3 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, -1, 14, 16.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y2
in degree 1
-
y1
in degree 1
-
x4
in degree 2
-
x2
in degree 2
-
y32
in degree 2
-
y22
in degree 2
-
x1
in degree 2
-
y1.y2
in degree 2
-
w
in degree 3
-
y3.x4
in degree 3
-
y3.x2
in degree 3
-
y2.x4
in degree 3
-
y2.x2
in degree 3
-
y23
in degree 3
-
y1.x4
in degree 3
-
y1.x2
in degree 3
-
y1.y22
in degree 3
-
x42
in degree 4
-
x2.x4
in degree 4
-
x22
in degree 4
-
y3.w
in degree 4
-
y32.x4
in degree 4
-
y32.x2
in degree 4
-
y2.w
in degree 4
-
y22.x2
in degree 4
-
y24
in degree 4
-
x1.x2
in degree 4
-
y1.w
in degree 4
-
y1.y23
in degree 4
-
u4
in degree 5
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
x4.w
in degree 5
-
x2.w
in degree 5
-
y3.x2.x4
in degree 5
-
y3.x22
in degree 5
-
y32.w
in degree 5
-
y2.x2.x4
in degree 5
-
y22.w
in degree 5
-
y23.x2
in degree 5
-
y25
in degree 5
-
y1.x2.x4
in degree 5
-
y1.x22
in degree 5
-
y1.y24
in degree 5
-
x43
in degree 6
-
x2.x42
in degree 6
-
x22.x4
in degree 6
-
x23
in degree 6
-
y3.u1
in degree 6
-
y3.x4.w
in degree 6
-
y3.x2.w
in degree 6
-
y32.x2.x4
in degree 6
-
y32.x22
in degree 6
-
y2.u3
in degree 6
-
y2.x2.w
in degree 6
-
y23.w
in degree 6
-
y24.x2
in degree 6
-
y26
in degree 6
-
y1.u3
in degree 6
-
y1.u2
in degree 6
-
y1.x4.w
in degree 6
-
y1.x2.w
in degree 6
-
x4.u4
in degree 7
-
x4.u1
in degree 7
-
x42.w
in degree 7
-
x2.u4
in degree 7
-
x2.u3
in degree 7
-
x2.u2
in degree 7
-
x2.u1
in degree 7
-
x2.x4.w
in degree 7
-
x22.w
in degree 7
-
y3.x22.x4
in degree 7
-
y32.u1
in degree 7
-
y32.x4.w
in degree 7
-
y32.x2.w
in degree 7
-
y22.u3
in degree 7
-
y24.w
in degree 7
-
y25.x2
in degree 7
-
y27
in degree 7
-
y1.x22.x4
in degree 7
-
y1.x23
in degree 7
-
y1.y2.u3
in degree 7
-
w.u3
in degree 8
-
w.u1
in degree 8
-
x2.x43
in degree 8
-
x22.x42
in degree 8
-
x23.x4
in degree 8
-
x24
in degree 8
-
y3.x4.u1
in degree 8
-
y3.x2.u1
in degree 8
-
y3.x2.x4.w
in degree 8
-
y3.x22.w
in degree 8
-
y32.x22.x4
in degree 8
-
y2.x2.u3
in degree 8
-
y23.u3
in degree 8
-
y25.w
in degree 8
-
y26.x2
in degree 8
-
y28
in degree 8
-
y1.x2.u2
in degree 8
-
y1.x2.x4.w
in degree 8
-
y1.x22.w
in degree 8
-
y1.y22.u3
in degree 8
-
x2.x4.u1
in degree 9
-
x22.u4
in degree 9
-
x22.u3
in degree 9
-
x22.u2
in degree 9
-
x22.u1
in degree 9
-
x22.x4.w
in degree 9
-
x23.w
in degree 9
-
y3.w.u1
in degree 9
-
y32.x4.u1
in degree 9
-
y32.x2.u1
in degree 9
-
y32.x2.x4.w
in degree 9
-
y32.x22.w
in degree 9
-
y2.w.u3
in degree 9
-
y22.x2.u3
in degree 9
-
y24.u3
in degree 9
-
y27.x2
in degree 9
-
y29
in degree 9
-
y1.x23.x4
in degree 9
-
y1.y23.u3
in degree 9
-
x4.w.u1
in degree 10
-
x2.w.u3
in degree 10
-
x2.w.u1
in degree 10
-
x22.x43
in degree 10
-
x24.x4
in degree 10
-
x25
in degree 10
-
y3.x2.x4.u1
in degree 10
-
y3.x22.u1
in degree 10
-
y3.x22.x4.w
in degree 10
-
y32.w.u1
in degree 10
-
y22.w.u3
in degree 10
-
y23.x2.u3
in degree 10
-
y25.u3
in degree 10
-
y210
in degree 10
-
y1.y24.u3
in degree 10
-
x22.x4.u1
in degree 11
-
x24.w
in degree 11
-
y3.x4.w.u1
in degree 11
-
y3.x2.w.u1
in degree 11
-
y32.x2.x4.u1
in degree 11
-
y32.x22.u1
in degree 11
-
y32.x22.x4.w
in degree 11
-
y2.x2.w.u3
in degree 11
-
y23.w.u3
in degree 11
-
y24.x2.u3
in degree 11
-
y26.u3
in degree 11
-
y211
in degree 11
-
x2.x4.w.u1
in degree 12
-
x22.w.u1
in degree 12
-
x25.x4
in degree 12
-
y3.x22.x4.u1
in degree 12
-
y32.x4.w.u1
in degree 12
-
y32.x2.w.u1
in degree 12
-
y24.w.u3
in degree 12
-
y25.x2.u3
in degree 12
-
y27.u3
in degree 12
-
y3.x2.x4.w.u1
in degree 13
-
y3.x22.w.u1
in degree 13
-
y25.w.u3
in degree 13
-
y26.x2.u3
in degree 13
-
y28.u3
in degree 13
-
x22.x4.w.u1
in degree 14
-
y32.x22.w.u1
in degree 14
-
y27.x2.u3
in degree 14
-
y29.u3
in degree 14
-
y3.x22.x4.w.u1
in degree 15
-
y210.u3
in degree 15
-
y211.u3
in degree 16
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y1.h2
in degree 5
-
x1.h2
in degree 6
-
y1.y2.h2
in degree 6
-
y2.x4.h2
in degree 7
-
y1.x4.h2
in degree 7
-
y1.x2.h2
in degree 7
-
y1.y22.h2
in degree 7
-
x1.x2.h2
in degree 8
-
y1.w.h2
in degree 8
-
y1.y23.h2
in degree 8
-
y2.x2.x4.h2
in degree 9
-
y1.x2.x4.h2
in degree 9
-
y1.x22.h2
in degree 9
-
y1.y24.h2
in degree 9
-
y1.u3.h2
in degree 10
-
y1.u2.h2
in degree 10
-
y1.x4.w.h2
in degree 10
-
y1.x2.w.h2
in degree 10
-
y1.x22.x4.h2
in degree 11
-
y1.x23.h2
in degree 11
-
y1.y2.u3.h2
in degree 11
-
y1.x2.u2.h2
in degree 12
-
y1.x2.x4.w.h2
in degree 12
-
y1.x22.w.h2
in degree 12
-
y1.y22.u3.h2
in degree 12
-
y1.x23.x4.h2
in degree 13
-
y1.y23.u3.h2
in degree 13
-
y1.y24.u3.h2
in degree 14
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- x3 restricts to
0
- x4 restricts to
0
- w restricts to
0
- v restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- u4 restricts to
0
- t restricts to
0
- r restricts to
y8
Restriction to special subgroup number 2, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
y32
+ y2.y3
- x3 restricts to
y42
- x4 restricts to
0
- w restricts to
y32.y4
+ y2.y3.y4
- v restricts to
0
- u1 restricts to
y22.y32.y4
+ y23.y3.y4
- u2 restricts to
y32.y43
+ y34.y4
+ y2.y3.y43
+ y2.y32.y42
+ y22.y3.y42
+ y22.y32.y4
- u3 restricts to
y3.y44
+ y33.y42
+ y34.y4
+ y2.y33.y4
+ y22.y32.y4
+ y23.y3.y4
+ y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u4 restricts to
y32.y43
+ y2.y3.y43
+ y2.y32.y42
+ y22.y3.y42
- t restricts to
y32.y44
+ y36
+ y2.y3.y44
+ y2.y34.y4
+ y2.y35
+ y22.y32.y42
+ y22.y34
+ y23.y3.y42
+ y23.y32.y4
+ y23.y33
- r restricts to
y32.y46
+ y33.y45
+ y34.y44
+ y35.y43
+ y2.y34.y43
+ y22.y3.y45
+ y22.y33.y43
+ y22.y34.y42
+ y22.y35.y4
+ y23.y3.y44
+ y24.y3.y43
+ y25.y32.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y23.y32.y42
+ y1.y23.y34
+ y1.y26.y3
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y22.y44
+ y12.y23.y3.y42
+ y12.y26
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y3.y42
+ y14.y23.y3
+ y18
Restriction to special subgroup number 3, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
y42
+ y32
+ y22
- x3 restricts to
y42
- x4 restricts to
y42
+ y22
- w restricts to
y2.y3.y4
+ y2.y32
+ y22.y4
+ y22.y3
+ y23
- v restricts to
y44
+ y2.y3.y42
+ y2.y32.y4
+ y22.y42
+ y22.y3.y4
+ y22.y32
- u1 restricts to
y2.y32.y42
+ y2.y33.y4
+ y22.y3.y42
+ y22.y33
+ y23.y32
+ y24.y4
+ y24.y3
+ y25
- u2 restricts to
y32.y43
+ y34.y4
+ y2.y3.y43
+ y2.y32.y42
+ y23.y32
+ y24.y4
+ y24.y3
+ y25
- u3 restricts to
y2.y3.y43
+ y2.y32.y42
+ y2.y33.y4
+ y2.y34
+ y22.y43
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y23.y32
- u4 restricts to
y32.y43
+ y34.y4
+ y2.y3.y43
+ y2.y32.y42
+ y2.y33.y4
+ y2.y34
+ y22.y3.y42
+ y22.y33
+ y23.y32
- t restricts to
y46
+ y32.y44
+ y36
+ y2.y3.y44
+ y2.y34.y4
+ y22.y44
+ y22.y32.y42
+ y22.y34
+ y23.y3.y42
+ y23.y32.y4
- r restricts to
y48
+ y36.y42
+ y2.y3.y46
+ y2.y32.y45
+ y2.y33.y44
+ y2.y35.y42
+ y22.y3.y45
+ y22.y33.y43
+ y22.y34.y42
+ y22.y36
+ y23.y32.y43
+ y23.y33.y42
+ y24.y44
+ y24.y32.y42
+ y26.y42
+ y28
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y4
- x1 restricts to
0
- x2 restricts to
y3.y4
+ y32
+ y2.y4
+ y22
- x3 restricts to
0
- x4 restricts to
y2.y4
+ y22
- w restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y2.y32
+ y22.y3
+ y23
+ y1.y42
+ y12.y4
- v restricts to
y3.y43
+ y32.y42
+ y2.y3.y42
+ y2.y32.y4
+ y22.y3.y4
+ y22.y32
- u1 restricts to
y2.y33.y4
+ y22.y3.y42
+ y22.y33
+ y23.y3.y4
+ y23.y32
+ y24.y4
+ y24.y3
+ y25
+ y1.y44
+ y1.y3.y43
+ y1.y32.y42
+ y12.y3.y42
+ y12.y32.y4
+ y14.y4
- u2 restricts to
y45
+ y2.y3.y43
+ y23.y3.y4
+ y23.y32
+ y24.y4
+ y24.y3
+ y25
+ y1.y44
+ y1.y2.y43
+ y1.y22.y42
+ y12.y43
+ y12.y2.y42
+ y12.y22.y4
- u3 restricts to
y45
+ y3.y44
+ y34.y4
+ y2.y32.y42
+ y2.y34
+ y22.y43
+ y22.y3.y42
+ y22.y32.y4
+ y23.y3.y4
+ y23.y32
+ y24.y4
+ y1.y2.y43
+ y1.y22.y42
+ y12.y43
+ y12.y2.y42
+ y12.y22.y4
+ y14.y4
- u4 restricts to
y3.y44
+ y32.y43
+ y2.y33.y4
+ y2.y34
+ y22.y3.y42
+ y22.y33
+ y23.y3.y4
+ y23.y32
+ y1.y3.y43
+ y1.y32.y42
+ y12.y3.y42
+ y12.y32.y4
- t restricts to
y3.y45
+ y32.y44
+ y33.y43
+ y34.y42
+ y35.y4
+ y36
+ y2.y3.y44
+ y2.y34.y4
+ y22.y3.y43
+ y22.y34
- r restricts to
y48
+ y3.y47
+ y32.y46
+ y33.y45
+ y34.y44
+ y35.y43
+ y36.y42
+ y2.y47
+ y2.y32.y45
+ y2.y34.y43
+ y2.y36.y4
+ y22.y46
+ y22.y36
+ y23.y45
+ y23.y3.y44
+ y23.y32.y43
+ y23.y34.y4
+ y24.y44
+ y24.y32.y42
+ y25.y43
+ y25.y3.y42
+ y26.y42
+ y26.y3.y4
+ y27.y4
+ y28
+ y1.y47
+ y1.y32.y45
+ y1.y34.y43
+ y1.y2.y3.y45
+ y1.y2.y34.y42
+ y1.y22.y32.y43
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y46
+ y12.y3.y45
+ y12.y32.y44
+ y12.y2.y45
+ y12.y2.y32.y43
+ y12.y2.y34.y4
+ y12.y22.y3.y43
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y3.y43
+ y14.y34
+ y14.y2.y43
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
(1 + 3t + 6t2
+ 9t3 + 12t4 + 16t5
+ 18t6 + 19t7 + 18t8
+ 15t9 + 12t10 + 8t11
+ 5t12 + 2t13) /
(1 - t2) (1 - t4) (1 - t6) (1 - t8\
)
Back to the groups of order 128