Small group number 740 of order 128
G is the group 128gp740
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 3 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 14 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2, a nilpotent element
- x2 in degree 2
- x3 in degree 2
- x4 in degree 2
- w in degree 3
- u1 in degree 5
- u2 in degree 5
- u3 in degree 5
- t1 in degree 6
- t2 in degree 6
- r in degree 8, a regular element
There are 53 minimal relations:
- y2.y3 =
0
- y1.y3 =
0
- y1.y2 =
0
- y3.x4 =
y3.x1
- y3.x3 =
y1.x2
- y1.x4 =
0
- y2.x1 =
0
- x42 =
y22.x2
- y3.w =
x1.x2
- y1.w =
x1.x3
- x1.x4 =
0
- x12 =
0
- y1.x2.x3 =
y1.x22
- x1.w =
0
- w2 =
x2.x32
+ x22.x4
+ x22.x3
+ y2.u2
+ y2.u1
+ y2.x3.w
+ y22.x2.x4
+ y23.w
+ y24.x4
+ x1.x22
- x32.x4 =
x22.x4
+ y2.u2
+ y2.x4.w
+ y22.x3.x4
+ y22.x2.x3
+ y23.w
+ x1.x2.x3
+ x1.x22
- x2.x3.x4 =
x22.x4
+ y2.u3
+ y22.x3.x4
+ y22.x2.x4
+ y23.w
+ y24.x2
+ x1.x2.x3
+ x1.x22
- y3.u3 =
y3.u2
+ y32.x22
+ y34.x2
+ y34.x1
- y3.u1 =
y32.x22
+ y34.x2
+ x1.x2.x3
+ x1.x22
+ y32.x1.x2
+ y34.x1
- y1.u3 =
0
- y1.u1 =
y12.x1.x3
- x4.u3 =
y2.x22.x3
+ y2.x23
+ y22.x4.w
+ y23.x2.x4
+ y23.x2.x3
+ y23.x22
+ x1.u3
- x4.u2 =
y2.x2.x32
+ y2.x22.x4
+ y2.x23
+ y22.u3
+ y22.x4.w
+ y22.x2.w
+ y23.x3.x4
+ y23.x2.x4
+ y23.x2.x3
+ y24.w
+ y25.x2
+ x1.u3
+ y3.x1.x22
+ y33.x1.x2
- x4.u1 =
y2.t2
+ y2.t1
+ y2.x22.x4
+ y2.x23
+ y22.u3
+ y22.u2
+ y22.u1
+ y22.x4.w
+ y23.x2.x4
+ y23.x2.x3
+ y25.x4
+ y3.x1.x22
+ y33.x1.x2
- x3.u3 =
x2.u3
+ x2.u2
+ x2.x4.w
+ y3.x23
+ y33.x22
+ y2.x22.x4
+ y2.x22.x3
+ y22.u3
+ y22.u2
+ y22.x4.w
+ y22.x3.w
+ y23.x2.x4
+ y23.x22
+ y25.x2
+ y1.x23
+ y33.x1.x2
- x3.x4.w =
x2.x4.w
+ y2.t2
+ y2.x22.x4
+ y22.u2
+ y22.u1
+ y22.x4.w
+ y22.x3.w
+ y23.x2.x3
+ y24.w
+ y25.x4
- y3.t2 =
y35.x2
+ x1.u3
+ y35.x1
- y3.t1 =
y3.x23
+ y35.x2
+ y35.x1
- y1.t2 =
x1.u3
+ x1.u2
+ y3.x1.x22
+ y33.x1.x2
- y1.t1 =
y1.x23
+ x1.u3
+ x1.u2
+ y3.x1.x22
+ y33.x1.x2
+ y1.x1.x32
+ y13.x1.x3
- x1.u1 =
y3.x1.x22
+ y33.x1.x2
- w.u3 =
x2.t2
+ x23.x4
+ y34.x22
+ y2.x2.u2
+ y2.x2.u1
+ y2.x2.x4.w
+ y2.x2.x3.w
+ y22.t2
+ y22.x2.x32
+ y23.x4.w
+ y24.x2.x3
+ x1.x23
+ y34.x1.x2
- w.u2 =
x3.t2
+ x2.t2
+ y34.x22
+ y2.x3.u2
+ y2.x3.u1
+ y2.x32.w
+ y2.x2.u1
+ y2.x2.x4.w
+ y22.t1
+ y22.x2.x32
+ y22.x22.x4
+ y22.x22.x3
+ y22.x23
+ y23.u3
+ y23.u2
+ y23.u1
+ y23.x3.w
+ y23.x2.w
+ y24.x3.x4
+ y24.x2.x4
+ y24.x2.x3
+ y24.x22
+ y26.x4
+ y26.x2
+ x1.x22.x3
+ x1.x23
+ y32.x1.x22
+ y34.x1.x2
- x4.t2 =
y2.x2.x4.w
+ y2.x2.x3.w
+ y2.x22.w
+ y22.t1
+ y22.x2.x32
+ y22.x23
+ y23.u3
+ y23.x3.w
+ y24.x2.x4
+ y24.x2.x3
+ y25.w
+ y26.x2
+ y34.x1.x2
- x4.t1 =
x23.x4
+ y2.x2.u1
+ y2.x2.x4.w
+ y2.x2.x3.w
+ y2.x22.w
+ y22.t2
+ y22.x22.x4
+ y22.x22.x3
+ y22.x23
+ y23.u2
+ y23.u1
+ y23.x4.w
+ y23.x3.w
+ y24.x2.x4
+ y25.w
+ y26.x4
+ y34.x1.x2
- x1.t2 =
y34.x1.x2
- x1.t1 =
x1.x23
+ y34.x1.x2
- w.t2 =
x2.x3.u2
+ y2.w.u1
+ y2.x3.t2
+ y2.x3.t1
+ y2.x2.t2
+ y2.x2.t1
+ y2.x22.x32
+ y2.x23.x3
+ y2.x24
+ y22.x32.w
+ y22.x2.u3
+ y22.x2.u1
+ y22.x22.w
+ y23.x23
+ y24.u2
+ y24.x2.w
+ y25.x3.x4
+ y25.x2.x4
+ y25.x2.x3
+ y25.x22
+ y26.w
+ y33.x1.x22
- u32 =
x23.x32
+ x25
+ y3.x22.u2
+ y32.x24
+ y34.x23
+ y36.x22
+ y24.x22.x4
+ y24.x22.x3
+ y24.x23
+ y25.u2
+ y25.u1
+ y25.x3.w
+ y26.x2.x4
+ y26.x22
+ y27.w
+ y28.x4
+ y38.x1
+ y32.r
- u2.u3 =
x22.x33
+ x23.x32
+ x24.x3
+ x25
+ y33.x2.u2
+ y34.x23
+ y2.x22.u3
+ y2.x22.u2
+ y2.x22.x4.w
+ y2.x22.x3.w
+ y2.x23.w
+ y22.x3.t2
+ y22.x2.x33
+ y22.x23.x3
+ y22.x24
+ y23.x3.u2
+ y23.x3.u1
+ y23.x32.w
+ y23.x2.u3
+ y23.x2.u2
+ y23.x2.x4.w
+ y23.x22.w
+ y24.t2
+ y24.t1
+ y24.x22.x4
+ y25.u3
+ y25.x4.w
+ y26.x3.x4
+ y27.w
+ y28.x2
+ y33.x1.u2
+ y38.x1
+ y32.r
- u22 =
x2.x34
+ x25
+ y3.x22.u2
+ y34.x23
+ y22.x23.x4
+ y22.x23.x3
+ y23.x2.u2
+ y23.x2.u1
+ y23.x2.x3.w
+ y24.x22.x3
+ y25.u2
+ y25.u1
+ y25.x3.w
+ y25.x2.w
+ y27.w
+ y28.x4
+ y1.x32.u2
+ y13.x3.u2
+ y38.x1
+ y13.x1.u2
+ y14.x1.x32
+ y32.r
+ y12.r
- u1.u3 =
x2.x3.t2
+ x2.x3.t1
+ x22.t2
+ x22.t1
+ x24.x3
+ x25
+ y3.x22.u2
+ y32.x24
+ y33.x2.u2
+ y36.x22
+ y2.x2.x3.u2
+ y2.x2.x3.u1
+ y2.x22.u3
+ y2.x22.u1
+ y2.x22.x4.w
+ y22.w.u1
+ y22.x3.t2
+ y22.x3.t1
+ y22.x2.t1
+ y22.x22.x32
+ y22.x23.x3
+ y22.x24
+ y23.x3.u2
+ y23.x3.u1
+ y23.x2.u1
+ y23.x2.x4.w
+ y23.x22.w
+ y24.t2
+ y24.x2.x32
+ y24.x22.x4
+ y24.x22.x3
+ y25.u1
+ y26.x2.x3
+ y26.x22
+ y28.x4
+ y3.x1.x2.u2
+ y32.x1.x23
+ y33.x1.u2
+ y34.x1.x22
- u1.u2 =
x32.t2
+ x32.t1
+ x22.t2
+ x22.t1
+ x23.x32
+ x25
+ y3.x22.u2
+ y33.x2.u2
+ y2.w.t1
+ y2.x32.u2
+ y2.x32.u1
+ y2.x2.x3.u1
+ y2.x22.u2
+ y2.x22.u1
+ y2.x23.w
+ y22.w.u1
+ y22.x2.t2
+ y22.x2.t1
+ y22.x2.x33
+ y22.x23.x3
+ y22.x24
+ y23.x3.u1
+ y23.x2.u3
+ y23.x2.u1
+ y23.x2.x3.w
+ y24.x2.x32
+ y26.x3.x4
+ y26.x2.x4
+ y26.x2.x3
+ y26.x22
+ x1.x34
+ x1.x24
+ y3.x1.x2.u2
+ y32.x1.x23
+ y33.x1.u2
+ y1.x1.x3.u2
+ y12.x1.x33
- u12 =
x22.x33
+ x24.x3
+ y32.x24
+ y36.x22
+ y2.x2.x3.u1
+ y2.x22.u1
+ y22.w.u1
+ y22.x2.t2
+ y22.x22.x32
+ y23.x3.u2
+ y23.x3.u1
+ y23.x32.w
+ y23.x2.u3
+ y24.t2
+ y24.x2.x32
+ y24.x22.x4
+ y25.u3
+ y25.u2
+ y25.x3.w
+ y26.x2.x4
+ y26.x2.x3
+ y26.x22
+ y27.w
+ y28.x2
+ y22.r
- u3.t2 =
x22.x32.w
+ x24.w
+ y34.x2.u2
+ y35.x23
+ y37.x22
+ y2.x2.x3.t1
+ y2.x22.t2
+ y2.x22.t1
+ y2.x22.x33
+ y2.x23.x32
+ y2.x24.x4
+ y2.x24.x3
+ y2.x25
+ y22.x2.x3.u2
+ y22.x22.u1
+ y22.x23.w
+ y23.w.u1
+ y23.x3.t2
+ y23.x2.t2
+ y23.x2.x33
+ y23.x22.x32
+ y23.x23.x3
+ y24.x2.u3
+ y24.x2.u2
+ y24.x2.x4.w
+ y24.x22.w
+ y25.x2.x32
+ y25.x22.x4
+ y25.x23
+ y26.u3
+ y26.x4.w
+ y27.x3.x4
+ y27.x2.x4
+ y27.x22
+ y28.w
+ y29.x2
+ x1.x22.u2
+ y3.x1.x24
+ y33.x1.x23
+ y34.x1.u2
+ y3.x1.r
- u3.t1 =
x22.x3.u1
+ x22.x32.w
+ x23.u3
+ x23.u1
+ x24.w
+ y3.x25
+ y33.x24
+ y34.x2.u2
+ y35.x23
+ y37.x22
+ y2.x2.x3.t2
+ y2.x23.x32
+ y2.x24.x4
+ y2.x25
+ y22.w.t1
+ y22.x2.x3.u2
+ y22.x22.u3
+ y22.x22.u1
+ y22.x22.x4.w
+ y23.x3.t2
+ y23.x2.t2
+ y23.x2.t1
+ y23.x22.x32
+ y23.x23.x3
+ y24.x3.u2
+ y24.x3.u1
+ y24.x32.w
+ y24.x2.u3
+ y24.x2.u2
+ y24.x2.u1
+ y24.x22.w
+ y25.t2
+ y25.x23
+ y26.u3
+ y26.u2
+ y26.u1
+ y26.x4.w
+ y27.x2.x3
+ y27.x22
+ y29.x4
+ y29.x2
+ y1.x25
+ y3.x1.x24
+ y33.x1.x23
+ y34.x1.u2
+ y35.x1.x22
- u2.t2 =
x2.x33.w
+ x22.x32.w
+ x23.x3.w
+ x24.w
+ y34.x2.u2
+ y2.x32.t1
+ y2.x2.x34
+ y2.x22.t2
+ y2.x22.t1
+ y2.x22.x33
+ y2.x24.x3
+ y2.x25
+ y22.w.t1
+ y22.x33.w
+ y22.x22.u3
+ y22.x22.x4.w
+ y22.x23.w
+ y23.w.u1
+ y23.x3.t2
+ y23.x2.t2
+ y23.x2.x33
+ y23.x22.x32
+ y23.x23.x4
+ y24.x3.u1
+ y24.x32.w
+ y24.x2.u3
+ y24.x2.u1
+ y24.x2.x3.w
+ y24.x22.w
+ y25.x22.x3
+ y25.x23
+ y26.u2
+ y26.x2.w
+ y27.x2.x4
+ y27.x2.x3
+ y27.x22
+ y28.w
+ x1.x32.u2
+ y32.x1.x2.u2
+ y33.x1.x23
+ y34.x1.u2
+ y12.x1.x3.u2
+ y3.x1.r
+ y1.x1.r
- u2.t1 =
x2.x32.u1
+ x2.x33.w
+ x22.x32.w
+ x23.u2
+ x23.u1
+ x23.x3.w
+ x24.w
+ y3.x25
+ y33.x24
+ y34.x2.u2
+ y2.x32.t2
+ y2.x2.w.u1
+ y2.x2.x3.t2
+ y2.x2.x3.t1
+ y2.x23.x32
+ y2.x24.x3
+ y2.x25
+ y22.w.t1
+ y22.x32.u2
+ y22.x32.u1
+ y22.x33.w
+ y22.x2.x3.u2
+ y22.x2.x3.u1
+ y22.x2.x32.w
+ y22.x22.u3
+ y22.x22.u2
+ y22.x22.u1
+ y22.x22.x4.w
+ y22.x22.x3.w
+ y23.x3.t1
+ y23.x2.t2
+ y23.x2.x33
+ y23.x22.x32
+ y23.x23.x4
+ y23.x23.x3
+ y24.x2.u3
+ y24.x2.u2
+ y24.x2.u1
+ y25.x23
+ y27.x2.x4
+ y27.x22
+ y1.x25
+ y3.x1.x24
+ y33.x1.x23
+ y34.x1.u2
+ y1.x1.r
- u1.t2 =
x3.w.t1
+ x2.w.t1
+ x2.x32.u2
+ x22.x3.u2
+ x23.x3.w
+ x24.w
+ y35.x23
+ y37.x22
+ y2.x3.w.u1
+ y2.x32.t2
+ y2.x2.x3.t2
+ y2.x22.t1
+ y2.x23.x32
+ y2.x24.x3
+ y2.x25
+ y22.x2.x3.u1
+ y22.x22.u2
+ y22.x22.u1
+ y22.x22.x4.w
+ y22.x23.w
+ y23.w.u1
+ y23.x3.t2
+ y23.x3.t1
+ y23.x2.t2
+ y23.x22.x32
+ y23.x23.x4
+ y23.x23.x3
+ y23.x24
+ y24.x32.w
+ y24.x2.x4.w
+ y24.x2.x3.w
+ y25.t2
+ y25.t1
+ y25.x2.x32
+ y25.x23
+ y26.u3
+ y26.x4.w
+ y26.x3.w
+ y26.x2.w
+ y27.x3.x4
+ y27.x2.x4
+ y27.x2.x3
+ x1.x22.u2
+ y3.x1.x24
+ y32.x1.x2.u2
+ y35.x1.x22
+ y23.r
- u1.t1 =
x3.w.t1
+ x2.w.t1
+ x2.x32.u2
+ x23.u1
+ x23.x4.w
+ x23.x3.w
+ x24.w
+ y35.x23
+ y37.x22
+ y2.x3.w.u1
+ y2.x32.t1
+ y2.x2.x3.t2
+ y2.x22.t2
+ y2.x22.t1
+ y2.x22.x33
+ y2.x23.x32
+ y2.x25
+ y22.w.t1
+ y22.x32.u2
+ y22.x32.u1
+ y22.x22.u3
+ y22.x22.u1
+ y22.x22.x4.w
+ y22.x22.x3.w
+ y22.x23.w
+ y23.x3.t1
+ y23.x22.x32
+ y24.x3.u1
+ y24.x32.w
+ y24.x2.u2
+ y24.x2.u1
+ y24.x2.x4.w
+ y25.t1
+ y25.x2.x32
+ y25.x23
+ y26.u3
+ y26.u2
+ y26.x3.w
+ y26.x2.w
+ y27.x2.x4
+ y29.x2
+ y2.x4.r
- t22 =
x22.x34
+ x23.x33
+ x24.x32
+ x25.x3
+ y38.x22
+ y2.x2.x32.u2
+ y2.x2.x32.u1
+ y2.x2.x33.w
+ y2.x23.u1
+ y2.x23.x4.w
+ y2.x23.x3.w
+ y23.x32.u2
+ y23.x32.u1
+ y23.x33.w
+ y23.x2.x3.u1
+ y23.x2.x32.w
+ y23.x22.u3
+ y23.x22.u1
+ y24.w.u1
+ y24.x2.t2
+ y24.x22.x32
+ y24.x23.x4
+ y25.x3.u2
+ y25.x3.u1
+ y25.x22.w
+ y26.t2
+ y26.x23
+ y27.x4.w
+ y27.x3.w
+ y27.x2.w
+ y29.w
+ y210.x2
+ y24.r
- t1.t2 =
x2.x3.w.u1
+ x22.w.u1
+ x22.x34
+ x23.t2
+ x23.x33
+ x24.x32
+ x25.x3
+ y38.x22
+ y2.x2.w.t1
+ y2.x2.x32.u2
+ y2.x23.u1
+ y2.x23.x3.w
+ y22.x3.w.u1
+ y22.x32.t2
+ y22.x2.x3.t1
+ y22.x2.x34
+ y22.x22.t2
+ y22.x22.t1
+ y22.x23.x32
+ y22.x25
+ y23.w.t1
+ y23.x2.x32.w
+ y23.x22.u3
+ y23.x22.u2
+ y23.x22.u1
+ y23.x23.w
+ y24.x3.t1
+ y24.x2.t2
+ y24.x2.x33
+ y24.x23.x3
+ y25.x3.u2
+ y25.x3.u1
+ y25.x2.u1
+ y26.t1
+ y26.x2.x32
+ y27.u3
+ y27.u2
+ y28.x2.x4
+ y28.x2.x3
+ y210.x2
+ x1.x24.x3
+ x1.x25
+ y32.x1.x24
+ y33.x1.x2.u2
+ y34.x1.x23
+ y36.x1.x22
+ y22.x4.r
- t12 =
x22.x34
+ x24.x32
+ x26
+ y38.x22
+ y2.x2.x32.u2
+ y2.x2.x32.u1
+ y2.x2.x33.w
+ y2.x22.x3.u1
+ y2.x23.x4.w
+ y2.x23.x3.w
+ y22.x2.w.u1
+ y22.x2.x34
+ y22.x22.t2
+ y22.x22.x33
+ y22.x24.x3
+ y22.x25
+ y23.x32.u2
+ y23.x32.u1
+ y23.x33.w
+ y23.x2.x3.u2
+ y23.x2.x3.u1
+ y24.x2.t2
+ y24.x22.x32
+ y25.x32.w
+ y25.x2.u2
+ y25.x2.x3.w
+ y25.x22.w
+ y26.x2.x32
+ y26.x22.x3
+ y27.u3
+ y27.u2
+ y27.x4.w
+ y28.x2.x4
+ y28.x2.x3
+ y28.x22
+ y210.x2
+ y22.x2.r
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y12.x2 =
0
- y1.x1.x2 =
0
- y1.x2.u2 =
0
- x1.x2.x32 =
x1.x22.x3
- x1.x2.u3 =
x1.x2.u2
+ y3.x1.x23
+ y33.x1.x22
- x1.x2.x3.u2 =
0
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
x3.x4
+ x32
+ x2.x3
+ x22
+ y34
+ y22.x2
+ y24
+ y14
in degree 4
- h3 =
x2.x32
+ x22.x4
+ x22.x3
+ y32.x22
+ y2.u2
+ y2.x4.w
+ y22.x32
+ y22.x2.x3
+ y22.x22
+ y23.w
+ y24.x2
+ y12.x32
in degree 6
- h4 =
y2
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 8, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y1
in degree 1
-
x4
in degree 2
-
x3
in degree 2
-
x2
in degree 2
-
y32
in degree 2
-
y12
in degree 2
-
x1
in degree 2
-
w
in degree 3
-
y3.x2
in degree 3
-
y33
in degree 3
-
y1.x3
in degree 3
-
y1.x2
in degree 3
-
y13
in degree 3
-
y3.x1
in degree 3
-
y1.x1
in degree 3
-
x32
in degree 4
-
x2.x4
in degree 4
-
x2.x3
in degree 4
-
x22
in degree 4
-
y32.x2
in degree 4
-
y34
in degree 4
-
y12.x3
in degree 4
-
y14
in degree 4
-
x1.x3
in degree 4
-
x1.x2
in degree 4
-
y32.x1
in degree 4
-
y12.x1
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
x4.w
in degree 5
-
x3.w
in degree 5
-
x2.w
in degree 5
-
y33.x2
in degree 5
-
y35
in degree 5
-
y1.x22
in degree 5
-
y13.x3
in degree 5
-
y15
in degree 5
-
y3.x1.x2
in degree 5
-
y33.x1
in degree 5
-
y1.x1.x3
in degree 5
-
y13.x1
in degree 5
-
t2
in degree 6
-
t1
in degree 6
-
x22.x3
in degree 6
-
y3.u2
in degree 6
-
y34.x2
in degree 6
-
y36
in degree 6
-
y1.u2
in degree 6
-
y14.x3
in degree 6
-
y16
in degree 6
-
x1.x2.x3
in degree 6
-
x1.x22
in degree 6
-
y32.x1.x2
in degree 6
-
y34.x1
in degree 6
-
y12.x1.x3
in degree 6
-
y14.x1
in degree 6
-
x3.u2
in degree 7
-
x3.u1
in degree 7
-
x2.u3
in degree 7
-
x2.u2
in degree 7
-
x2.u1
in degree 7
-
x2.x4.w
in degree 7
-
x2.x3.w
in degree 7
-
x22.w
in degree 7
-
y32.u2
in degree 7
-
y35.x2
in degree 7
-
y12.u2
in degree 7
-
y15.x3
in degree 7
-
x1.u3
in degree 7
-
x1.u2
in degree 7
-
y33.x1.x2
in degree 7
-
y35.x1
in degree 7
-
y13.x1.x3
in degree 7
-
y15.x1
in degree 7
-
w.u1
in degree 8
-
x3.t2
in degree 8
-
x3.t1
in degree 8
-
x2.t2
in degree 8
-
x2.t1
in degree 8
-
y3.x2.u2
in degree 8
-
y33.u2
in degree 8
-
y36.x2
in degree 8
-
y1.x3.u2
in degree 8
-
y13.u2
in degree 8
-
y16.x3
in degree 8
-
y3.x1.u2
in degree 8
-
y34.x1.x2
in degree 8
-
y1.x1.u2
in degree 8
-
y14.x1.x3
in degree 8
-
w.t1
in degree 9
-
x2.x3.u1
in degree 9
-
x22.u3
in degree 9
-
x22.u2
in degree 9
-
x22.u1
in degree 9
-
x22.x3.w
in degree 9
-
y32.x2.u2
in degree 9
-
y34.u2
in degree 9
-
y12.x3.u2
in degree 9
-
y14.u2
in degree 9
-
x1.x3.u2
in degree 9
-
x1.x2.u2
in degree 9
-
y32.x1.u2
in degree 9
-
y35.x1.x2
in degree 9
-
y12.x1.u2
in degree 9
-
y15.x1.x3
in degree 9
-
x3.w.u1
in degree 10
-
x2.w.u1
in degree 10
-
x2.x3.t2
in degree 10
-
x2.x3.t1
in degree 10
-
x22.t2
in degree 10
-
x22.t1
in degree 10
-
y33.x2.u2
in degree 10
-
y35.u2
in degree 10
-
y13.x3.u2
in degree 10
-
y15.u2
in degree 10
-
y3.x1.x2.u2
in degree 10
-
y33.x1.u2
in degree 10
-
y1.x1.x3.u2
in degree 10
-
y13.x1.u2
in degree 10
-
x3.w.t1
in degree 11
-
x2.w.t1
in degree 11
-
x22.x3.u1
in degree 11
-
y34.x2.u2
in degree 11
-
y36.u2
in degree 11
-
y14.x3.u2
in degree 11
-
y16.u2
in degree 11
-
y32.x1.x2.u2
in degree 11
-
y34.x1.u2
in degree 11
-
y12.x1.x3.u2
in degree 11
-
y14.x1.u2
in degree 11
-
x2.x3.w.u1
in degree 12
-
x22.w.u1
in degree 12
-
x22.x3.t2
in degree 12
-
x22.x3.t1
in degree 12
-
y35.x2.u2
in degree 12
-
y15.x3.u2
in degree 12
-
y33.x1.x2.u2
in degree 12
-
y35.x1.u2
in degree 12
-
y13.x1.x3.u2
in degree 12
-
y15.x1.u2
in degree 12
-
x2.x3.w.t1
in degree 13
-
x22.w.t1
in degree 13
-
y16.x3.u2
in degree 13
-
y34.x1.x2.u2
in degree 13
-
y14.x1.x3.u2
in degree 13
-
x22.x3.w.u1
in degree 14
-
y35.x1.x2.u2
in degree 14
-
y15.x1.x3.u2
in degree 14
-
x22.x3.w.t1
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y3
in degree 1
-
y1
in degree 1
-
y32
in degree 2
-
y12
in degree 2
-
x1
in degree 2
-
y3.x2
in degree 3
-
y33
in degree 3
-
y1.x3
in degree 3
-
y1.x2
in degree 3
-
y13
in degree 3
-
y3.x1
in degree 3
-
y1.x1
in degree 3
-
y32.x2
in degree 4
-
y34
in degree 4
-
y12.x3
in degree 4
-
y14
in degree 4
-
x1.x3
in degree 4
-
x1.x2
in degree 4
-
y32.x1
in degree 4
-
y12.x1
in degree 4
-
y33.x2
in degree 5
-
y35
in degree 5
-
y1.x22
in degree 5
-
y13.x3
in degree 5
-
y15
in degree 5
-
y3.x1.x2
in degree 5
-
y33.x1
in degree 5
-
y1.x1.x3
in degree 5
-
y13.x1
in degree 5
-
y3.u2
in degree 6
-
y34.x2
in degree 6
-
y36
in degree 6
-
y1.u2
in degree 6
-
y14.x3
in degree 6
-
y16
in degree 6
-
x1.x2.x3
in degree 6
-
x1.x22
in degree 6
-
y32.x1.x2
in degree 6
-
y34.x1
in degree 6
-
y12.x1.x3
in degree 6
-
y14.x1
in degree 6
-
y32.u2
in degree 7
-
y35.x2
in degree 7
-
y12.u2
in degree 7
-
y15.x3
in degree 7
-
x1.u3
in degree 7
-
x1.u2
in degree 7
-
y33.x1.x2
in degree 7
-
y35.x1
in degree 7
-
y13.x1.x3
in degree 7
-
y15.x1
in degree 7
-
y3.x2.u2
in degree 8
-
y33.u2
in degree 8
-
y36.x2
in degree 8
-
y1.x3.u2
in degree 8
-
y13.u2
in degree 8
-
y16.x3
in degree 8
-
y3.x1.u2
in degree 8
-
y34.x1.x2
in degree 8
-
y1.x1.u2
in degree 8
-
y14.x1.x3
in degree 8
-
x3.u2.h
+ x2.u2.h
+ t2.h2
+ x22.x3.h2
+ u1.h3
+ x2.w.h3
+ x4.h6
+ h8
in degree 8
-
x2.u3.h
+ x2.u2.h
+ x2.x4.w.h
+ x2.x4.h4
+ x22.h4
+ h8
in degree 8
-
x22.u3
+ x2.u2.h2
+ x2.x4.w.h2
+ x22.w.h2
+ u2.h4
+ x4.w.h4
+ x2.w.h4
+ x32.h5
+ x2.x4.h5
+ x2.x3.h5
+ w.h6
+ x3.h7
+ x2.h7
+ h9
in degree 9
-
x22.u2
+ x3.t2.h
+ x3.u1.h2
+ x2.u2.h2
+ x2.x4.w.h2
+ t2.h3
+ u2.h4
+ u1.h4
+ x3.w.h4
+ x4.h7
+ x3.h7
+ h9
in degree 9
-
y32.x2.u2
in degree 9
-
y34.u2
in degree 9
-
y12.x3.u2
in degree 9
-
y14.u2
in degree 9
-
x1.x3.u2
in degree 9
-
x1.x2.u2
in degree 9
-
y32.x1.u2
in degree 9
-
y35.x1.x2
in degree 9
-
y12.x1.u2
in degree 9
-
y15.x1.x3
in degree 9
-
x2.x3.t2
+ x2.x3.u1.h
+ x3.t2.h2
+ x2.t2.h2
+ x3.u1.h3
+ x2.u1.h3
+ x2.x3.w.h3
+ x22.w.h3
+ t2.h4
+ u2.h5
+ u1.h5
+ x4.w.h5
+ x3.w.h5
+ x2.w.h5
+ x2.x4.h6
+ x4.h8
in degree 10
-
y33.x2.u2
in degree 10
-
y35.u2
in degree 10
-
y13.x3.u2
in degree 10
-
y15.u2
in degree 10
-
y3.x1.x2.u2
in degree 10
-
y33.x1.u2
in degree 10
-
y1.x1.x3.u2
in degree 10
-
y13.x1.u2
in degree 10
-
y34.x2.u2
in degree 11
-
y36.u2
in degree 11
-
y14.x3.u2
in degree 11
-
y16.u2
in degree 11
-
y32.x1.x2.u2
in degree 11
-
y34.x1.u2
in degree 11
-
y12.x1.x3.u2
in degree 11
-
y14.x1.u2
in degree 11
-
x22.x3.t2
+ x22.x3.u1.h
+ x2.x3.t2.h2
+ x22.t2.h2
+ x2.x3.u1.h3
+ x22.u1.h3
+ x22.x3.w.h3
+ x23.w.h3
+ x2.t2.h4
+ x2.u2.h5
+ x2.u1.h5
+ x2.x4.w.h5
+ x2.x3.w.h5
+ x22.w.h5
+ x22.x4.h6
+ x2.x4.h8
in degree 12
-
y35.x2.u2
in degree 12
-
y15.x3.u2
in degree 12
-
y33.x1.x2.u2
in degree 12
-
y35.x1.u2
in degree 12
-
y13.x1.x3.u2
in degree 12
-
y15.x1.u2
in degree 12
-
y16.x3.u2
in degree 13
-
y34.x1.x2.u2
in degree 13
-
y14.x1.x3.u2
in degree 13
-
y35.x1.x2.u2
in degree 14
-
y15.x1.x3.u2
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.x2
in degree 3
-
y1.x22
in degree 5
-
x1.x2.x3
in degree 6
-
x1.x22
+ y34.x1
in degree 6
-
x1.x22.x3
in degree 8
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- x3 restricts to
0
- x4 restricts to
0
- w restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- t1 restricts to
0
- t2 restricts to
0
- r restricts to
y8
Restriction to special subgroup number 2, which is 8gp5
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
0
- x2 restricts to
y32
+ y2.y3
- x3 restricts to
0
- x4 restricts to
0
- w restricts to
0
- u1 restricts to
y2.y34
+ y24.y3
- u2 restricts to
y35
+ y22.y33
+ y23.y32
+ y24.y3
+ y12.y23
+ y14.y2
- u3 restricts to
y35
+ y2.y34
+ y22.y33
+ y23.y32
+ y12.y23
+ y14.y2
- t1 restricts to
y36
+ y2.y35
+ y22.y34
+ y23.y33
+ y24.y32
+ y25.y3
- t2 restricts to
y24.y32
+ y25.y3
- r restricts to
y24.y34
+ y26.y32
+ y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 3, which is 8gp5
- y1 restricts to
y2
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- x3 restricts to
y32
+ y2.y3
- x4 restricts to
0
- w restricts to
0
- u1 restricts to
0
- u2 restricts to
y12.y23
+ y14.y2
- u3 restricts to
0
- t1 restricts to
0
- t2 restricts to
0
- r restricts to
y12.y22.y34
+ y12.y25.y3
+ y14.y34
+ y14.y23.y3
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
y42
- x3 restricts to
y32
+ y2.y3
- x4 restricts to
y2.y4
- w restricts to
y3.y42
+ y32.y4
+ y22.y4
+ y1.y22
+ y12.y2
- u1 restricts to
y3.y44
+ y33.y42
+ y2.y3.y43
+ y2.y33.y4
+ y22.y43
+ y22.y3.y42
+ y22.y32.y4
+ y24.y4
+ y1.y22.y32
+ y1.y23.y4
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y4
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u2 restricts to
y45
+ y34.y4
+ y2.y3.y43
+ y22.y32.y4
+ y23.y42
+ y23.y3.y4
+ y24.y4
+ y1.y23.y4
+ y1.y24
+ y12.y22.y4
+ y12.y23
- u3 restricts to
y45
+ y32.y43
+ y2.y3.y43
+ y22.y43
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y24.y4
+ y1.y24
+ y12.y23
- t1 restricts to
y46
+ y32.y44
+ y34.y42
+ y2.y45
+ y2.y3.y44
+ y2.y33.y42
+ y2.y34.y4
+ y22.y32.y42
+ y22.y33.y4
+ y23.y3.y42
+ y1.y22.y43
+ y1.y23.y42
+ y1.y23.y32
+ y1.y24.y3
+ y12.y2.y43
+ y12.y22.y42
+ y12.y22.y32
+ y12.y23.y4
+ y12.y23.y3
+ y14.y2.y4
- t2 restricts to
y3.y45
+ y32.y44
+ y33.y43
+ y34.y42
+ y2.y3.y44
+ y2.y32.y43
+ y2.y33.y42
+ y22.y44
+ y22.y3.y43
+ y23.y43
+ y1.y22.y43
+ y1.y22.y32.y4
+ y1.y23.y3.y4
+ y1.y24.y4
+ y12.y2.y43
+ y12.y2.y32.y4
+ y12.y22.y3.y4
+ y12.y23.y4
+ y12.y24
+ y14.y22
- r restricts to
y34.y44
+ y36.y42
+ y2.y32.y45
+ y2.y33.y44
+ y2.y34.y43
+ y2.y35.y42
+ y22.y3.y45
+ y22.y32.y44
+ y22.y33.y43
+ y22.y34.y42
+ y23.y3.y44
+ y23.y33.y42
+ y23.y34.y4
+ y24.y32.y42
+ y25.y32.y4
+ y26.y42
+ y26.y3.y4
+ y27.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y34.y4
+ y1.y23.y32.y42
+ y1.y24.y43
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y26.y4
+ y1.y27
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y34
+ y12.y23.y43
+ y12.y23.y3.y42
+ y12.y24.y32
+ y12.y25.y4
+ y13.y25
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y32.y4
+ y14.y22.y32
+ y14.y24
+ y15.y23
+ y16.y22
+ y18
(1 + 2t + 4t2
+ 5t3 + 5t4 + 7t5
+ 6t6 + 6t7 + 5t8
+ 3t9 + 3t10 + t11
+ t12 - t14) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128