Small group number 761 of order 128
G is the group 128gp761
G has 3 minimal generators, rank 5 and exponent 4.
The centre has rank 2.
There is one conjugacy class of maximal elementary abelian
subgroups. Each maximal elementary abelian has rank 5.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 22 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1, a nilpotent element
- y3 in degree 1
- x1 in degree 2
- x2 in degree 2
- x3 in degree 2
- x4 in degree 2
- w1 in degree 3
- w2 in degree 3
- v1 in degree 4
- v2 in degree 4
- v3 in degree 4
- v4 in degree 4
- v5 in degree 4
- v6 in degree 4, a regular element
- v7 in degree 4, a regular element
- u1 in degree 5
- u2 in degree 5
- u3 in degree 5
- t in degree 6
- s1 in degree 7
- s2 in degree 7
There are 153 minimal relations:
- y2.y3 =
0
- y1.y3 =
0
- y22 =
y1.y2
+ y12
- y2.x4 =
0
- y2.x2 =
y1.x2
- y2.x1 =
y1.x2
- y1.x4 =
0
- y1.x3 =
y1.x2
- y13 =
0
- x42 =
y3.w2
- x22 =
x1.x3
+ y3.w1
- y2.w2 =
0
- y2.w1 =
0
- y1.w2 =
0
- y1.w1 =
0
- x4.w2 =
y3.v5
- x4.w1 =
y3.v4
+ y3.x2.x4
- x3.w2 =
y3.v3
+ y3.v2
+ y3.v1
- x2.w2 =
y3.v1
- x1.w2 =
y3.v3
- y2.v5 =
0
- y2.v4 =
0
- y2.v3 =
y1.v1
- y2.v1 =
y1.v1
- y1.v5 =
0
- y1.v4 =
0
- y1.v3 =
y1.v2
- w22 =
y32.v6
- w1.w2 =
y3.u1
+ y32.v3
+ y32.v2
+ y32.v1
- w12 =
x1.x32
+ x12.x3
+ y3.x3.w1
+ y3.x2.w1
+ y3.x1.w1
+ y32.x1.x3
+ y32.x1.x2
+ y33.w1
+ y32.v7
- x4.v5 =
y32.v6
- x4.v4 =
y3.u1
+ y32.v3
+ y32.v2
- x4.v3 =
x1.v5
- x4.v2 =
x3.v5
+ x2.v5
+ x1.v5
- x4.v1 =
x2.v5
- x3.v3 =
x1.v3
+ x1.v2
+ x1.v1
- x3.v1 =
x2.v2
+ x1.v3
+ x1.v2
+ y3.u1
+ y32.v3
+ y32.v2
+ y32.v1
- x2.v3 =
x1.v1
- x2.v1 =
x1.v3
+ x1.v2
+ x1.v1
+ y3.u1
+ y32.v3
+ y32.v2
+ y32.v1
- x2.x3.x4 =
x1.x2.x4
+ y3.u3
+ y3.u2
+ y32.v4
+ y32.x2.x4
- x1.x3.x4 =
x1.x2.x4
+ y3.u3
+ y32.x2.x4
- y2.u3 =
0
- y2.u2 =
y12.v7
- y2.u1 =
0
- y1.u3 =
0
- y1.u2 =
y1.y2.v7
+ y12.v7
- y1.u1 =
0
- w2.v5 =
y3.x4.v6
- w2.v4 =
y3.t
+ y3.x3.v5
+ y3.x2.v5
+ y3.x1.v5
- w2.v3 =
y3.x1.v6
- w2.v2 =
y3.x3.v6
+ y3.x2.v6
+ y3.x1.v6
- w2.v1 =
y3.x2.v6
- w1.v5 =
y3.t
+ y3.x3.v5
+ y3.x1.v5
- w1.v4 =
x2.u2
+ x1.u2
+ y3.x2.v4
+ y3.x1.x2.x4
+ y32.u3
+ y33.v4
+ y3.x4.v7
+ y1.x2.v7
+ y1.x1.v7
- w1.v3 =
x1.u1
+ y3.x1.v3
+ y3.x1.v2
+ y3.x1.v1
- w1.v2 =
x3.u1
+ x2.u1
+ x1.u1
+ y3.x3.v2
- w1.v1 =
x2.u1
+ y3.x2.v2
+ y3.x1.v3
+ y3.x1.v2
+ y32.u1
+ y33.v3
+ y33.v2
+ y33.v1
- x4.u3 =
y3.x1.v3
+ y3.x1.v2
+ y33.v1
- x4.u2 =
y3.x2.v2
+ y3.x1.v1
+ y33.v1
- x4.u1 =
y3.t
+ y3.x1.v5
- x3.u3 =
x2.u2
+ y3.x3.v4
+ y3.x2.v4
+ y1.x12.x2
- x2.u3 =
x1.u2
+ y32.u3
+ y33.v4
+ y1.x12.x2
+ y1.x2.v7
+ y1.x1.v7
- y2.t =
0
- y1.t =
0
- v52 =
y3.w2.v6
- v4.v5 =
y3.w1.v6
+ y32.x2.v6
- v42 =
x1.x3.v2
+ x1.x2.v2
+ x12.v3
+ x12.v2
+ y3.x3.u1
+ y3.x2.u1
+ y32.x3.v2
+ y32.x1.v3
+ y32.x1.v2
+ y3.w2.v7
- v3.v5 =
x1.x4.v6
- v3.v4 =
x1.t
+ x12.v5
+ y3.s2
+ y32.t
+ y32.x3.v5
+ y32.x1.v5
- v32 =
x12.v6
- v2.v5 =
x3.x4.v6
+ x2.x4.v6
+ x1.x4.v6
- v2.v4 =
x3.t
+ x32.v5
+ x2.t
+ x1.t
+ x1.x2.v5
+ x12.v5
+ y3.s2
- v2.v3 =
x1.x3.v6
+ x1.x2.v6
+ x12.v6
- v22 =
x32.v6
+ x1.x3.v6
+ x12.v6
+ y3.w1.v6
- v1.v5 =
x2.x4.v6
- v1.v4 =
x2.t
+ x1.x2.v5
+ y3.s1
+ y32.t
+ y32.x3.v5
+ y32.x1.v5
- v1.v3 =
x1.x2.v6
- v1.v2 =
x2.x3.v6
+ x1.x3.v6
+ x1.x2.v6
+ y3.w1.v6
- v12 =
x1.x3.v6
+ y3.w1.v6
- w2.u3 =
y3.s2
+ y32.t
+ y32.x3.v5
+ y32.x2.v5
+ y32.x1.v5
- w2.u2 =
y3.s1
+ y32.t
+ y32.x3.v5
+ y32.x2.v5
+ y32.x1.v5
- w2.u1 =
y3.w1.v6
+ y32.x3.v6
- w1.u3 =
x1.x3.v4
+ x1.x2.v4
+ y3.x1.u2
+ y32.x2.v4
+ y33.u3
+ y34.v4
- w1.u2 =
x2.x3.v4
+ x1.x3.v4
+ y3.x1.u2
+ y32.x1.x2.x4
+ y33.u3
+ y34.v4
+ y32.x4.v7
- w1.u1 =
x1.x3.v2
+ x1.x2.v2
+ x12.v3
+ x12.v2
+ y3.x2.u1
+ y32.x2.v2
+ y3.w2.v7
- x4.t =
y3.w1.v6
+ y32.x3.v6
+ y32.x1.v6
- x2.x3.v5 =
x1.x2.v5
+ y3.s2
+ y3.s1
+ y32.t
+ y32.x3.v5
+ y32.x1.v5
- x1.x3.v5 =
x1.x2.v5
+ y3.s2
+ y32.t
+ y32.x3.v5
+ y32.x1.v5
- y2.s2 =
0
- y2.s1 =
0
- y1.s2 =
0
- y1.s1 =
0
- v5.u3 =
y3.x1.x3.v6
+ y3.x1.x2.v6
+ y33.x2.v6
- v5.u2 =
y3.x2.x3.v6
+ y3.x1.x3.v6
+ y32.w1.v6
+ y33.x2.v6
- v5.u1 =
y3.v4.v6
+ y3.x3.x4.v6
+ y3.x2.x4.v6
- v4.u3 =
x1.x3.u1
+ x1.x2.u1
+ y3.x1.x3.v2
+ y3.x1.x2.v2
+ y3.x12.v3
+ y3.x12.v2
+ y32.x2.u1
+ y33.x2.v2
+ y33.x1.v1
- v4.u2 =
x2.x3.u1
+ x1.x3.u1
+ y3.x2.x3.v2
+ y3.x12.v3
+ y3.x12.v2
+ y3.x12.v1
+ y32.x3.u1
+ y32.x2.u1
+ y32.x1.u1
+ y33.x3.v2
+ y33.x1.v1
+ y32.w2.v7
- v4.u1 =
x2.s1
+ x1.s1
+ y3.x3.t
+ y3.x32.v5
+ y3.x1.t
+ y3.x1.x2.v5
+ y3.x12.v5
+ y32.s1
+ y33.t
+ y33.x3.v5
+ y33.x1.v5
+ y1.x12.v2
+ y1.x12.v1
+ y3.v5.v7
- v3.u3 =
x1.s2
+ y3.x1.t
+ y3.x12.v5
+ y32.s2
+ y33.t
+ y33.x3.v5
+ y33.x1.v5
+ y1.x12.v2
+ y1.x12.v1
- v3.u2 =
x1.s1
+ y3.x1.t
+ y3.x12.v5
+ y32.s2
+ y33.t
+ y33.x3.v5
+ y33.x1.v5
+ y1.x12.v2
+ y1.v2.v7
+ y1.v1.v7
- v3.u1 =
x1.w1.v6
+ y3.x1.x3.v6
- v2.u3 =
x2.s1
+ x1.s2
+ x1.s1
+ y3.x3.t
+ y3.x32.v5
+ y32.s2
+ y32.s1
- v2.u2 =
x3.s1
+ x2.s1
+ x1.s1
+ y3.x3.t
+ y3.x32.v5
+ y3.x2.t
+ y3.x1.t
+ y3.x1.x2.v5
+ y3.x12.v5
+ y32.s2
+ y1.x12.v2
+ y2.v2.v7
+ y1.v2.v7
- v2.u1 =
x3.w1.v6
+ x2.w1.v6
+ x1.w1.v6
+ y3.x32.v6
+ y3.x2.x3.v6
+ y3.x1.x3.v6
- v1.u3 =
x1.s1
+ y3.x1.t
+ y3.x12.v5
+ y33.t
+ y33.x3.v5
+ y33.x1.v5
+ y1.x12.v2
+ y1.x12.v1
- v1.u2 =
x2.s1
+ y3.x2.t
+ y3.x1.x2.v5
+ y32.s1
+ y33.t
+ y33.x3.v5
+ y33.x1.v5
+ y1.x12.v1
- v1.u1 =
x2.w1.v6
+ y3.x2.x3.v6
- w2.t =
y3.v4.v6
+ y3.x3.x4.v6
+ y3.x2.x4.v6
+ y3.x1.x4.v6
- w1.t =
x2.s1
+ x1.s1
+ y3.x3.t
+ y3.x32.v5
+ y3.x2.t
+ y3.x1.x2.v5
+ y32.s2
+ y32.s1
+ y1.x12.v2
+ y1.x12.v1
+ y3.v5.v7
- x4.s2 =
y3.x1.x3.v6
+ y3.x1.x2.v6
+ y32.w1.v6
- x4.s1 =
y3.x2.x3.v6
+ y3.x1.x3.v6
- x3.s2 =
x2.s1
+ y2.x32.v2
+ y1.x12.v1
- x2.s2 =
x1.s1
+ y3.x2.t
+ y3.x1.t
+ y3.x1.x2.v5
+ y3.x12.v5
+ y32.s1
+ y1.x12.v2
+ y1.x12.v1
- u32 =
x12.x3.v2
+ x12.x2.v2
+ x13.v3
+ x13.v2
+ y34.x1.v3
+ y34.x1.v2
+ y34.x1.v1
+ y35.u1
+ y36.v3
+ y36.v2
+ y36.v1
- u2.u3 =
x1.x2.x3.v2
+ x12.x3.v2
+ x12.x2.v2
+ x13.v1
+ y3.x1.x3.u1
+ y3.x1.x2.u1
+ y3.x12.u1
+ y32.x1.x2.v2
+ y32.x12.v3
+ y32.x12.v2
+ y33.x3.u1
+ y33.x2.u1
+ y34.x3.v2
+ y35.u1
+ y36.v3
+ y36.v2
+ y36.v1
- u22 =
x1.x32.v2
+ x1.x2.x3.v2
+ x12.x3.v2
+ x13.v3
+ x13.v2
+ x13.v1
+ y3.x32.u1
+ y3.x1.x3.u1
+ y32.x32.v2
+ y32.x2.x3.v2
+ y32.x1.x2.v2
+ y32.x12.v1
+ y33.x2.u1
+ y34.x2.v2
+ y34.x1.v3
+ y34.x1.v2
+ y34.x1.v1
+ y35.u1
+ y36.v3
+ y36.v2
+ y36.v1
+ y33.w2.v7
+ y1.y2.v72
- u1.u3 =
x1.x3.t
+ x1.x2.t
+ y3.x1.s2
+ y32.x2.t
+ y32.x1.t
+ y32.x12.v5
+ y33.s2
+ y34.t
+ y34.x3.v5
+ y34.x1.v5
- u1.u2 =
x2.x3.t
+ x1.x3.t
+ y3.x2.s1
+ y32.x3.t
+ y32.x32.v5
+ y32.x1.t
+ y32.x1.x2.v5
+ y32.x12.v5
+ y33.s1
+ y34.t
+ y34.x3.v5
+ y34.x1.v5
+ y32.v5.v7
- u12 =
x1.x32.v6
+ x12.x3.v6
+ y3.x3.w1.v6
+ y3.x2.w1.v6
+ y3.x1.w1.v6
+ y32.x32.v6
+ y32.x1.x3.v6
+ y32.x1.x2.v6
+ y33.w1.v6
+ y32.v6.v7
- v5.t =
y3.v6.u1
+ y32.v3.v6
- v4.t =
x1.x32.v6
+ x12.x3.v6
+ y32.x2.x3.v6
+ y32.x1.x3.v6
+ y33.w1.v6
+ y32.v6.v7
- v3.t =
x1.v4.v6
+ x12.x4.v6
+ y3.v6.u3
+ y32.x2.x4.v6
- v2.t =
x3.v4.v6
+ x32.x4.v6
+ x2.v4.v6
+ x1.v4.v6
+ x1.x2.x4.v6
+ x12.x4.v6
+ y3.v6.u3
+ y32.v4.v6
- v1.t =
x2.v4.v6
+ x1.x2.x4.v6
+ y3.v6.u2
+ y32.x2.x4.v6
- w2.s2 =
y3.v6.u3
+ y32.v4.v6
- w2.s1 =
y3.v6.u2
+ y32.v4.v6
- w1.s2 =
x1.x3.t
+ x1.x2.t
+ y3.x1.s2
+ y3.x1.s1
+ y32.x3.t
+ y32.x32.v5
+ y32.x2.t
+ y32.x1.x2.v5
+ y33.s2
+ y33.s1
+ y32.v5.v7
- w1.s1 =
x2.x3.t
+ x1.x3.t
+ y3.x3.s1
+ y3.x1.s1
- u3.t =
x1.x3.w1.v6
+ x1.x2.w1.v6
+ y3.x1.x32.v6
+ y3.x1.x2.x3.v6
+ y3.x12.x3.v6
+ y3.x12.x2.v6
+ y32.x2.w1.v6
+ y33.x2.x3.v6
+ y33.x1.x2.v6
- u2.t =
x2.x3.w1.v6
+ x1.x3.w1.v6
+ y3.x2.x32.v6
+ y3.x1.x2.x3.v6
+ y33.x2.x3.v6
+ y33.x1.x3.v6
+ y34.w1.v6
+ y33.v6.v7
- u1.t =
x2.v6.u2
+ x1.v6.u2
+ y3.x32.x4.v6
+ y3.x1.v4.v6
+ y32.v6.u3
+ y33.x2.x4.v6
+ y3.x4.v6.v7
+ y1.x2.v6.v7
+ y1.x1.v6.v7
- v5.s2 =
y3.x1.v3.v6
+ y3.x1.v2.v6
+ y32.v6.u1
+ y33.v3.v6
+ y33.v2.v6
+ y33.v1.v6
- v5.s1 =
y3.x2.v2.v6
+ y3.x1.v1.v6
+ y32.v6.u1
+ y33.v3.v6
+ y33.v2.v6
+ y33.v1.v6
- v4.s2 =
x1.x3.w1.v6
+ x1.x2.w1.v6
+ y3.x1.x32.v6
+ y3.x1.x2.x3.v6
+ y32.x3.w1.v6
+ y33.x1.x3.v6
+ y33.x1.x2.v6
+ y34.w1.v6
+ y33.v6.v7
- v4.s1 =
x2.x3.w1.v6
+ x1.x3.w1.v6
+ y3.x1.x32.v6
+ y3.x1.x2.x3.v6
+ y32.x3.w1.v6
- v3.s2 =
x1.v6.u3
+ y3.x1.v4.v6
+ y1.x12.x2.v6
+ y1.x13.v6
- v3.s1 =
x1.v6.u2
+ y3.x1.v4.v6
+ y1.x13.v6
+ y1.x2.v6.v7
+ y1.x1.v6.v7
- v2.s2 =
x2.v6.u2
+ x1.v6.u3
+ x1.v6.u2
+ y3.x1.v4.v6
+ y32.v6.u3
+ y33.v4.v6
+ y2.x33.v6
+ y1.x13.v6
+ y1.x2.v6.v7
+ y1.x1.v6.v7
- v2.s1 =
x3.v6.u2
+ x2.v6.u2
+ x1.v6.u2
+ y3.x3.v4.v6
+ y3.x2.v4.v6
+ y3.x1.v4.v6
+ y1.x13.v6
+ y2.x3.v6.v7
+ y1.x1.v6.v7
- v1.s2 =
x1.v6.u2
+ y3.x2.v4.v6
+ y32.v6.u3
+ y33.v4.v6
+ y1.x12.x2.v6
+ y1.x2.v6.v7
+ y1.x1.v6.v7
- v1.s1 =
x2.v6.u2
+ y3.x2.v4.v6
+ y1.x12.x2.v6
- t2 =
x1.x3.v2.v6
+ x1.x2.v2.v6
+ x12.v3.v6
+ x12.v2.v6
+ y3.x3.v6.u1
+ y3.x2.v6.u1
+ y32.x2.v2.v6
+ y32.x1.v3.v6
+ y3.w2.v6.v7
- u3.s2 =
x12.x32.v6
+ x13.x3.v6
+ y3.x1.x3.w1.v6
+ y3.x1.x2.w1.v6
+ y3.x12.w1.v6
+ y32.x1.x2.x3.v6
+ y32.x12.x3.v6
+ y33.x2.w1.v6
+ y33.x1.w1.v6
- u3.s1 =
x1.x2.x32.v6
+ x12.x2.x3.v6
+ y3.x1.x3.w1.v6
+ y32.x1.x32.v6
+ y32.x1.x2.x3.v6
+ y33.x3.w1.v6
- u2.s2 =
x1.x2.x32.v6
+ x12.x2.x3.v6
+ y3.x2.x3.w1.v6
+ y3.x1.x3.w1.v6
+ y3.x1.x2.w1.v6
+ y32.x1.x32.v6
+ y32.x1.x2.x3.v6
+ y33.x3.w1.v6
+ y34.x1.x3.v6
+ y34.x1.x2.v6
+ y35.w1.v6
+ y34.v6.v7
- u2.s1 =
x1.x33.v6
+ x12.x32.v6
+ y3.x32.w1.v6
+ y3.x2.x3.w1.v6
+ y3.x1.x3.w1.v6
+ y32.x1.x32.v6
+ y32.x1.x2.x3.v6
+ y33.x3.w1.v6
- u1.s2 =
x1.x3.v4.v6
+ x1.x2.v4.v6
+ y32.x2.v4.v6
+ y32.x1.x2.x4.v6
+ y32.x4.v6.v7
- u1.s1 =
x2.x3.v4.v6
+ x1.x3.v4.v6
+ y3.x3.v6.u2
+ y3.x2.v6.u2
+ y32.x3.v4.v6
+ y32.x2.v4.v6
- t.s2 =
x1.x3.v6.u1
+ x1.x2.v6.u1
+ y3.x1.x3.v2.v6
+ y3.x1.x2.v2.v6
+ y32.x2.v6.u1
+ y32.x1.v6.u1
+ y33.x2.v2.v6
+ y33.x1.v3.v6
+ y33.x1.v2.v6
+ y33.x1.v1.v6
+ y32.w2.v6.v7
- t.s1 =
x2.x3.v6.u1
+ x1.x3.v6.u1
+ y3.x1.x2.v2.v6
+ y3.x12.v1.v6
+ y32.x1.v6.u1
+ y33.x1.v3.v6
+ y33.x1.v2.v6
+ y33.x1.v1.v6
- s22 =
x12.x3.v2.v6
+ x12.x2.v2.v6
+ x13.v3.v6
+ x13.v2.v6
+ y32.x1.x3.v2.v6
+ y32.x1.x2.v2.v6
+ y32.x12.v3.v6
+ y32.x12.v2.v6
+ y33.x3.v6.u1
+ y33.x2.v6.u1
+ y34.x3.v2.v6
+ y34.x1.v1.v6
+ y35.v6.u1
+ y36.v3.v6
+ y36.v2.v6
+ y36.v1.v6
+ y33.w2.v6.v7
- s1.s2 =
x1.x2.x3.v2.v6
+ x12.x3.v2.v6
+ x12.x2.v2.v6
+ x13.v1.v6
+ y3.x2.x3.v6.u1
+ y3.x1.x3.v6.u1
+ y3.x12.v6.u1
+ y32.x2.x3.v2.v6
+ y32.x1.x2.v2.v6
+ y32.x12.v1.v6
+ y33.x3.v6.u1
+ y33.x1.v6.u1
+ y34.x3.v2.v6
+ y34.x2.v2.v6
+ y34.x1.v3.v6
+ y34.x1.v2.v6
+ y35.v6.u1
+ y36.v3.v6
+ y36.v2.v6
+ y36.v1.v6
- s12 =
x1.x32.v2.v6
+ x1.x2.x3.v2.v6
+ x12.x3.v2.v6
+ x13.v3.v6
+ x13.v2.v6
+ x13.v1.v6
+ y3.x32.v6.u1
+ y3.x1.x3.v6.u1
+ y32.x32.v2.v6
+ y32.x2.x3.v2.v6
+ y32.x1.x3.v2.v6
+ y32.x12.v3.v6
+ y32.x12.v2.v6
+ y32.x12.v1.v6
+ y33.x3.v6.u1
+ y34.x3.v2.v6
+ y34.x2.v2.v6
+ y34.x1.v1.v6
+ y35.v6.u1
+ y36.v3.v6
+ y36.v2.v6
+ y36.v1.v6
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y12.x2 =
0
- y12.x1 =
0
- y1.y2.v2 =
0
- y12.v2 =
0
- y12.v1 =
0
- y1.x2.v2 =
y1.x1.v1
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 14 onwards, and
Benson's tests detect stability from degree 15
onwards.
This cohomology ring has dimension 5 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
v6
in degree 4
- h2 =
v7
in degree 4
- h3 =
x32
+ x1.x3
+ x12
+ y34
in degree 4
- h4 =
x1.x32
+ x12.x3
+ y32.x32
+ y32.x1.x3
+ y32.x12
in degree 6
- h5 =
y3
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
2 terms h1, h2 form
a complete Duflot regular sequence.
That is, their restrictions to the greatest central elementary abelian
subgroup form a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 3, 7, 13, 14.
-
Filter degree type:
-1, -2, -3, -4, -5, -5.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4, h5) is as follows.
-
1
in degree 0
-
y2
in degree 1
-
y1
in degree 1
-
x4
in degree 2
-
x3
in degree 2
-
x2
in degree 2
-
x1
in degree 2
-
y1.y2
in degree 2
-
y12
in degree 2
-
w2
in degree 3
-
w1
in degree 3
-
y2.x3
in degree 3
-
y1.x2
in degree 3
-
y1.x1
in degree 3
-
y12.y2
in degree 3
-
v5
in degree 4
-
v4
in degree 4
-
v3
in degree 4
-
v2
in degree 4
-
v1
in degree 4
-
x3.x4
in degree 4
-
x2.x4
in degree 4
-
x2.x3
in degree 4
-
x1.x4
in degree 4
-
x1.x3
in degree 4
-
x1.x2
in degree 4
-
x12
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
x3.w1
in degree 5
-
x2.w1
in degree 5
-
x1.w1
in degree 5
-
y2.v2
in degree 5
-
y1.v2
in degree 5
-
y1.v1
in degree 5
-
y1.x1.x2
in degree 5
-
t
in degree 6
-
x3.v5
in degree 6
-
x3.v4
in degree 6
-
x3.v2
in degree 6
-
x2.v5
in degree 6
-
x2.v4
in degree 6
-
x2.v2
in degree 6
-
x1.v5
in degree 6
-
x1.v4
in degree 6
-
x1.v3
in degree 6
-
x1.v2
in degree 6
-
x1.v1
in degree 6
-
x1.x2.x4
in degree 6
-
x1.x2.x3
in degree 6
-
x12.x4
in degree 6
-
x12.x3
in degree 6
-
x12.x2
in degree 6
-
s2
in degree 7
-
s1
in degree 7
-
x3.u2
in degree 7
-
x3.u1
in degree 7
-
x2.u2
in degree 7
-
x2.u1
in degree 7
-
x2.x3.w1
in degree 7
-
x1.u3
in degree 7
-
x1.u2
in degree 7
-
x1.u1
in degree 7
-
x1.x3.w1
in degree 7
-
x1.x2.w1
in degree 7
-
x12.w1
in degree 7
-
y2.x3.v2
in degree 7
-
y1.x1.v2
in degree 7
-
y1.x1.v1
in degree 7
-
x3.t
in degree 8
-
x2.t
in degree 8
-
x2.x3.v4
in degree 8
-
x1.t
in degree 8
-
x1.x3.v4
in degree 8
-
x1.x2.v5
in degree 8
-
x1.x2.v4
in degree 8
-
x1.x2.v2
in degree 8
-
x12.v5
in degree 8
-
x12.v4
in degree 8
-
x12.v3
in degree 8
-
x12.v2
in degree 8
-
x12.v1
in degree 8
-
x12.x2.x3
in degree 8
-
x3.s1
in degree 9
-
x2.s1
in degree 9
-
x2.x3.u1
in degree 9
-
x1.s2
in degree 9
-
x1.s1
in degree 9
-
x1.x3.u2
in degree 9
-
x1.x3.u1
in degree 9
-
x1.x2.u2
in degree 9
-
x1.x2.u1
in degree 9
-
x1.x2.x3.w1
in degree 9
-
x12.u3
in degree 9
-
x12.u2
in degree 9
-
x12.u1
in degree 9
-
x12.x3.w1
in degree 9
-
x12.x2.w1
in degree 9
-
x2.x3.t
in degree 10
-
x1.x3.t
in degree 10
-
x1.x2.t
in degree 10
-
x1.x2.x3.v4
in degree 10
-
x12.t
in degree 10
-
x12.x3.v4
in degree 10
-
x12.x2.v4
in degree 10
-
x12.x2.v2
in degree 10
-
x1.x3.s1
in degree 11
-
x1.x2.s1
in degree 11
-
x1.x2.x3.u1
in degree 11
-
x12.s2
in degree 11
-
x12.s1
in degree 11
-
x12.x3.u2
in degree 11
-
x12.x3.u1
in degree 11
-
x12.x2.u2
in degree 11
-
x12.x2.u1
in degree 11
-
x12.x2.x3.w1
in degree 11
-
x1.x2.x3.t
in degree 12
-
x12.x3.t
in degree 12
-
x12.x2.t
in degree 12
-
x12.x2.x3.v4
in degree 12
-
x12.x3.s1
in degree 13
-
x12.x2.s1
in degree 13
-
x12.x2.x3.u1
in degree 13
-
x12.x2.x3.t
in degree 14
A basis for AnnR/(h1, h2, h3, h4)(h5) is as follows.
-
y2
in degree 1
-
y1
in degree 1
-
y1.y2
in degree 2
-
y12
in degree 2
-
y2.x3
in degree 3
-
y1.x2
in degree 3
-
y1.x1
in degree 3
-
y12.y2
in degree 3
-
y2.v2
in degree 5
-
y1.v2
in degree 5
-
y1.v1
in degree 5
-
y1.x1.x2
in degree 5
-
x3.v2
+ x2.v2
+ x1.v2
+ u1.h
+ v3.h2
+ v2.h2
+ v1.h2
+ w2.h3
in degree 6
-
x2.u2
+ x1.u2
+ x3.v4.h
+ x2.v4.h
+ x1.v4.h
+ x1.x2.x4.h
+ u3.h2
+ u2.h2
+ v4.h3
+ x2.x4.h3
+ x4.h5
in degree 7
-
y2.x3.v2
in degree 7
-
y1.x1.v2
in degree 7
-
y1.x1.v1
in degree 7
-
x12.v3
+ v3.h4
+ w2.h5
in degree 8
-
x2.s1
+ x1.s1
+ x3.t.h
+ x12.v5.h
in degree 9
-
x1.x3.u2
+ x12.u3
+ x12.u2
+ x1.x3.v4.h
+ x12.v4.h
+ x3.u2.h2
+ x1.u2.h2
+ x3.v4.h3
+ x1.v4.h3
+ u3.h4
+ x3.x4.h5
+ x1.x4.h5
+ x4.h7
in degree 9
-
x1.x2.u2
+ x12.u2
+ x1.x3.v4.h
+ x1.x2.v4.h
+ x12.v4.h
+ x12.x2.x4.h
+ x1.u3.h2
+ x1.u2.h2
+ x1.v4.h3
+ x1.x2.x4.h3
+ x1.x4.h5
in degree 9
-
x12.u3
+ x3.u2.h2
+ x1.u2.h2
+ x3.v4.h3
+ x1.v4.h3
+ u3.h4
+ x3.x4.h5
+ x2.x4.h5
+ x4.h7
in degree 9
-
x1.x3.s1
+ x12.s2
+ x12.s1
+ x12.t.h
+ x3.s1.h2
+ x1.s2.h2
+ x1.s1.h2
+ x1.t.h3
+ x1.x2.v5.h3
+ x12.v5.h3
+ x3.v5.h5
+ x2.v5.h5
in degree 11
-
x1.x2.s1
+ x12.s1
+ x1.x3.t.h
+ x13.v5.h
in degree 11
-
x12.s2
+ x12.t.h
+ x3.s1.h2
+ x1.s2.h2
+ x1.s1.h2
+ x1.t.h3
+ x1.x2.v5.h3
+ x12.v5.h3
+ x3.v5.h5
+ x1.v5.h5
in degree 11
-
x12.x3.u2
+ x13.u3
+ x13.u2
+ x12.x3.v4.h
+ x13.v4.h
+ x1.x3.u2.h2
+ x12.u2.h2
+ x1.x3.v4.h3
+ x12.v4.h3
+ x1.u3.h4
+ x1.x3.x4.h5
+ x12.x4.h5
+ x1.x4.h7
in degree 11
-
x12.x2.u2
+ x13.u2
+ x12.x3.v4.h
+ x12.x2.v4.h
+ x13.v4.h
+ x13.x2.x4.h
+ x12.u3.h2
+ x12.u2.h2
+ x12.v4.h3
+ x12.x2.x4.h3
+ x12.x4.h5
in degree 11
-
x12.x3.s1
+ x13.s2
+ x13.s1
+ x13.t.h
+ x1.x3.s1.h2
+ x12.s2.h2
+ x12.s1.h2
+ x12.t.h3
+ x12.x2.v5.h3
+ x13.v5.h3
+ x1.x3.v5.h5
+ x1.x2.v5.h5
in degree 13
-
x12.x2.s1
+ x13.s1
+ x12.x3.t.h
+ x14.v5.h
in degree 13
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y2
in degree 1
-
y1
in degree 1
-
y1.y2
in degree 2
-
y12
in degree 2
-
y2.x3
in degree 3
-
y1.x2
in degree 3
-
y1.x1
in degree 3
-
y12.y2
in degree 3
-
y2.v2
in degree 5
-
y1.v2
in degree 5
-
y1.v1
in degree 5
-
y1.x1.x2
in degree 5
-
x3.v2
+ x2.v2
+ x1.v2
+ y3.u1
+ y32.v3
+ y32.v2
+ y32.v1
+ y33.w2
in degree 6
-
y2.x3.v2
in degree 7
-
y1.x1.v2
in degree 7
-
y1.x1.v1
in degree 7
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.y2
in degree 2
-
y12
in degree 2
-
y12.y2
in degree 3
Restriction to special subgroup number 1, which is 4gp2
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- x3 restricts to
0
- x4 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- v3 restricts to
0
- v4 restricts to
0
- v5 restricts to
0
- v6 restricts to
y14
- v7 restricts to
y24
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- t restricts to
0
- s1 restricts to
0
- s2 restricts to
0
Restriction to special subgroup number 2, which is 32gp51
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y3
- x1 restricts to
y42
+ y3.y4
- x2 restricts to
y4.y5
+ y2.y3
- x3 restricts to
y52
+ y3.y5
- x4 restricts to
y1.y3
- w1 restricts to
y4.y52
+ y42.y5
+ y3.y4.y5
+ y22.y3
- w2 restricts to
y12.y3
- v1 restricts to
y12.y4.y5
+ y12.y2.y3
- v2 restricts to
y12.y52
+ y12.y4.y5
+ y12.y42
+ y12.y3.y5
+ y12.y3.y4
+ y12.y2.y3
- v3 restricts to
y12.y42
+ y12.y3.y4
- v4 restricts to
y1.y4.y52
+ y1.y42.y5
+ y1.y2.y32
+ y1.y22.y3
- v5 restricts to
y13.y3
- v6 restricts to
y14
- v7 restricts to
y42.y52
+ y43.y5
+ y3.y42.y5
+ y2.y4.y52
+ y2.y42.y5
+ y2.y3.y4.y5
+ y2.y3.y42
+ y2.y32.y4
+ y22.y52
+ y22.y4.y5
+ y22.y42
+ y22.y3.y5
+ y22.y3.y4
+ y22.y32
+ y23.y3
+ y24
- u1 restricts to
y12.y4.y52
+ y12.y42.y5
+ y12.y3.y52
+ y12.y3.y4.y5
+ y12.y32.y5
+ y12.y22.y3
- u2 restricts to
y1.y4.y53
+ y1.y42.y52
+ y1.y3.y4.y52
+ y1.y32.y4.y5
+ y1.y2.y3.y52
+ y1.y2.y32.y5
+ y1.y2.y33
+ y1.y22.y32
- u3 restricts to
y1.y42.y52
+ y1.y43.y5
+ y1.y3.y4.y52
+ y1.y2.y3.y42
+ y1.y2.y32.y4
+ y1.y2.y33
- t restricts to
y13.y4.y52
+ y13.y42.y5
+ y13.y3.y52
+ y13.y3.y4.y5
+ y13.y3.y42
+ y13.y32.y5
+ y13.y32.y4
+ y13.y22.y3
- s1 restricts to
y13.y4.y53
+ y13.y42.y52
+ y13.y3.y42.y5
+ y13.y32.y4.y5
+ y13.y2.y3.y52
+ y13.y2.y32.y5
- s2 restricts to
y13.y42.y52
+ y13.y43.y5
+ y13.y3.y42.y5
+ y13.y2.y3.y42
+ y13.y2.y32.y4
+ y13.y22.y32
(1 + 2t + 4t2
+ 4t3 + 8t4 + 10t5
+ 11t6 + 14t7 + 11t8
+ 12t9 + 8t10 + 6t11
+ 4t12 + t14) /
(1 - t) (1 - t4)3 (1 - t6)
Back to the groups of order 128