Small group number 823 of order 128
G is the group 128gp823
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There is one conjugacy class of maximal elementary abelian
subgroups. Each maximal elementary abelian has rank 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 20 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1, a nilpotent element
- y3 in degree 1
- x1 in degree 2
- x2 in degree 2
- w in degree 3, a nilpotent element
- v1 in degree 4, a nilpotent element
- v2 in degree 4, a nilpotent element
- v3 in degree 4
- u1 in degree 5, a nilpotent element
- u2 in degree 5
- u3 in degree 5
- u4 in degree 5
- s1 in degree 7, a nilpotent element
- s2 in degree 7, a nilpotent element
- r1 in degree 8, a nilpotent element
- r2 in degree 8, a nilpotent element
- r3 in degree 8
- r4 in degree 8, a regular element
- q in degree 9, a nilpotent element
There are 144 minimal relations:
- y2.y3 =
0
- y1.y3 =
y1.y2
+ y12
- y22 =
y1.y2
+ y12
- y2.x2 =
y1.x1
- y2.w =
y12.x1
- y1.w =
0
- x2.w =
y3.v1
+ y1.x22
- x1.w =
y3.v2
+ y3.v1
+ y1.x12
- y2.v3 =
y2.x12
- y1.v3 =
y1.x22
- y1.x1.x2 =
y1.x12
- y2.v2 =
0
- y2.v1 =
0
- y1.v2 =
0
- y1.v1 =
0
- x2.v3 =
x23
+ x1.x22
+ x12.x2
+ y3.u4
+ y32.x1.x2
+ y32.x12
+ x1.v1
+ y3.u1
+ y32.v2
+ y2.u3
- x1.v3 =
x1.x22
+ x12.x2
+ x13
+ y3.u3
+ x1.v2
+ x1.v1
- x2.v2 =
x2.v1
+ x1.v1
+ y2.u3
+ y1.u2
- y2.u4 =
y1.u3
- y2.u2 =
0
- y1.u4 =
y1.u3
+ y1.u2
- w2 =
0
- y2.u1 =
0
- y1.u1 =
0
- x2.u3 =
x1.u4
+ y3.x12.x2
+ y3.x13
+ x1.u1
+ y3.x1.v2
+ y1.x13
- w.v3 =
y3.x2.v1
+ y3.x1.v2
+ y32.u1
+ y1.x23
- w.v2 =
0
- w.v1 =
0
- v32 =
x24
+ x12.x22
+ x14
+ y32.x1.x22
+ y32.x12.x2
+ y33.u3
+ y33.u2
+ y34.v3
+ y34.x22
+ y34.x1.x2
+ y33.u1
+ y34.v2
+ y34.v1
- v2.v3 =
x22.v1
+ x12.v2
+ x12.v1
+ y3.x2.u1
+ y3.x1.u1
+ y2.x1.u3
+ y1.x2.u2
+ y1.x1.u3
- v1.v3 =
x22.v1
+ y3.s2
+ y3.x2.u1
+ y3.x1.u1
+ y32.x1.v1
+ y33.u1
+ y34.v2
+ y34.v1
+ y2.x1.u3
+ y1.x1.u3
- w.u4 =
y3.x2.u1
+ y32.x1.v2
+ y1.x2.u2
+ y1.x1.u3
- w.u3 =
y3.x1.u1
+ y1.x1.u3
- w.u2 =
y3.s1
+ y3.x2.u1
+ y32.x2.v1
+ y32.x1.v2
+ y32.x1.v1
+ y33.u1
+ y34.v2
+ y1.x2.u2
- x1.x2.v1 =
x12.v1
+ y3.s2
+ y3.x1.u1
+ y32.x1.v1
+ y33.u1
+ y34.v2
+ y34.v1
+ y2.x1.u3
+ y1.x1.u3
- v22 =
0
- v1.v2 =
0
- v12 =
0
- w.u1 =
0
- y2.s2 =
0
- y2.s1 =
0
- y1.s2 =
0
- y1.s1 =
0
- v3.u4 =
x22.u4
+ x1.x2.u4
+ x12.u4
+ y3.x1.x23
+ y3.x12.x22
+ y32.x2.u2
+ y32.x1.u3
+ y33.x12.x2
+ y34.u4
+ y35.x1.x2
+ y35.x12
+ x1.x2.u1
+ y3.x12.v2
+ y32.s2
+ y32.s1
+ y32.x2.u1
+ y32.x1.u1
+ y33.x2.v1
+ y33.x1.v1
+ y35.v2
+ y35.v1
+ y1.x14
- v3.u3 =
x1.x2.u4
+ x12.u4
+ x12.u3
+ y3.x13.x2
+ y3.x14
+ y32.x1.u3
+ y32.x1.u2
+ y33.x13
+ y34.u3
+ x1.x2.u1
+ y3.x12.v2
+ y32.s2
+ y33.x1.v1
+ y34.u1
+ y35.v2
+ y35.v1
+ y1.x14
- v3.u2 =
x22.u2
+ x1.x2.u2
+ x12.u2
+ y3.r3
+ y3.x1.x23
+ y3.x14
+ y32.x2.u4
+ y33.x12.x2
+ y33.x13
+ y34.u2
+ y3.r2
+ y3.x12.v2
+ y3.x12.v1
+ y32.s2
+ y32.s1
+ y32.x2.u1
+ y33.x2.v1
+ y33.x1.v1
+ y34.u1
- v3.u1 =
x22.u1
+ x1.x2.u1
+ x12.u1
+ y32.s2
+ y32.s1
+ y32.x2.u1
+ y33.x2.v1
+ y33.x1.v1
+ y34.u1
+ y35.v1
- v2.u4 =
x22.u1
+ x1.x2.u1
+ y3.x12.v2
+ y32.s2
+ y32.x1.u1
+ y33.x1.v1
+ y34.u1
+ y35.v2
+ y35.v1
- v2.u3 =
x1.x2.u1
+ x12.u1
- v2.u2 =
x22.u1
+ x1.x2.u1
+ y3.r2
+ y3.r1
+ y3.x12.v2
+ y32.s2
+ y32.x2.u1
+ y32.x1.u1
+ y33.x2.v1
+ y33.x1.v1
+ y34.u1
+ y35.v1
- v1.u4 =
x22.u1
+ y32.s2
+ y32.x1.u1
+ y33.x1.v1
+ y34.u1
+ y35.v2
+ y35.v1
+ y1.x14
- v1.u3 =
x1.x2.u1
+ y1.x14
- v1.u2 =
x22.u1
+ x1.x2.u1
+ y3.r1
+ y3.x22.v1
+ y3.x12.v2
+ y32.s1
+ y33.x1.v2
+ y35.v2
+ y35.v1
- x2.s1 =
x1.x2.u1
+ y3.r1
+ y3.x12.v2
+ y3.x12.v1
+ y32.s1
+ y32.x2.u1
+ y33.x2.v1
+ y33.x1.v2
+ y33.x1.v1
+ y35.v2
+ y35.v1
- x1.s1 =
x1.x2.u1
+ y3.r2
+ y3.x22.v1
+ y3.x12.v2
+ y32.s1
+ y32.x2.u1
+ y32.x1.u1
+ y33.x2.v1
+ y35.v1
- y2.r3 =
y2.x14
+ y1.x14
- y1.r3 =
0
- v2.u1 =
0
- v1.u1 =
0
- y2.r2 =
0
- y2.r1 =
0
- y1.r2 =
0
- y1.r1 =
0
- u42 =
x1.x24
+ x12.x23
+ y3.x22.u2
+ y3.x1.x2.u4
+ y32.x12.x22
+ y32.x13.x2
+ y32.x14
+ y33.x2.u4
+ y34.x1.x22
+ y34.x12.x2
+ y3.x22.u1
+ y3.x1.x2.u1
+ y33.s2
+ y33.x2.u1
+ y33.x1.u1
+ y34.x2.v1
+ y35.u1
+ y36.v2
+ y36.v1
+ y1.x12.u3
+ y12.r4
- u3.u4 =
x12.x23
+ x13.x22
+ y3.x1.x2.u2
+ y3.x12.u3
+ y32.x13.x2
+ y33.x1.u4
+ y34.x12.x2
+ y34.x13
+ y3.x1.s2
+ y3.x12.u1
+ y32.r2
+ y32.x22.v1
+ y32.x12.v2
+ y33.s2
+ y33.s1
+ y33.x2.u1
+ y34.x2.v1
+ y34.x1.v2
+ y35.u1
+ y36.v2
+ y1.x12.u3
+ y1.y2.r4
- u32 =
x13.x22
+ x14.x2
+ y3.x12.u3
+ y3.x12.u2
+ y32.x14
+ y33.x1.u3
+ y3.x12.u1
+ y2.x12.u3
+ y1.y2.r4
+ y12.r4
- u2.u4 =
x2.r3
+ x1.x24
+ x14.x2
+ y3.x22.u4
+ y3.x1.x2.u2
+ y3.x12.u2
+ y32.x12.x22
+ y32.x13.x2
+ y33.x2.u2
+ x23.v1
+ x13.v1
+ y3.q
+ y3.x12.u1
+ y32.r2
+ y32.r1
+ y32.x22.v1
+ y32.x12.v1
+ y33.x2.u1
+ y34.x2.v1
+ y34.x1.v2
+ y35.u1
+ y36.v2
+ y2.x12.u3
+ y1.x12.u3
+ y1.y2.r4
+ y12.r4
- u2.u3 =
x1.r3
+ x12.x23
+ x15
+ y3.x1.x2.u4
+ y32.x13.x2
+ y32.x14
+ y33.x1.u2
+ x13.v2
+ y3.x2.s2
+ y3.x1.s2
+ y3.x1.x2.u1
+ y32.x12.v2
+ y33.s2
+ y33.x2.u1
+ y34.x1.v1
+ y35.u1
+ y36.v2
+ y36.v1
+ y2.x12.u3
- u22 =
x1.x24
+ x13.x22
+ y3.x22.u2
+ y3.x1.x2.u2
+ y32.x24
+ y32.x1.x23
+ y33.x2.u2
+ y33.x1.u4
+ y33.x1.u3
+ y33.x1.u2
+ y34.x23
+ y35.u3
+ y35.u2
+ y36.v3
+ y36.x22
+ y36.x1.x2
+ y36.x12
+ y3.x22.u1
+ y3.x1.x2.u1
+ y32.r2
+ y32.x12.v2
+ y32.x12.v1
+ y33.s2
+ y33.s1
+ y33.x2.u1
+ y33.x1.u1
+ y34.x2.v1
+ y35.u1
+ y32.r4
- u1.u4 =
y3.x2.s2
+ y3.x22.u1
+ y3.x12.u1
+ y32.r1
+ y32.x22.v1
+ y32.x12.v2
+ y33.s2
+ y33.s1
+ y33.x1.u1
+ y34.x1.v2
+ y35.u1
+ y1.x12.u3
- u1.u3 =
y3.x1.s2
+ y32.r2
+ y32.x22.v1
+ y32.x12.v2
+ y33.s2
+ y33.s1
+ y33.x2.u1
+ y33.x1.u1
+ y34.x2.v1
+ y35.u1
+ y36.v2
+ y1.x12.u3
- u1.u2 =
y3.q
+ y3.x22.u1
+ y3.x12.u1
+ y32.x22.v1
+ y32.x12.v2
+ y32.x12.v1
+ y34.x2.v1
+ y34.x1.v2
+ y34.x1.v1
+ y35.u1
- u12 =
0
- w.s2 =
0
- w.s1 =
0
- y2.q =
0
- y1.q =
0
- v3.s2 =
x22.s2
+ x1.x2.s2
+ x12.s2
+ y3.x2.r2
+ y3.x23.v1
+ y3.x1.r1
+ y3.x13.v2
+ y3.x13.v1
+ y32.x22.u1
+ y32.x1.x2.u1
+ y32.x12.u1
+ y33.r1
+ y33.x22.v1
+ y34.s2
+ y34.x1.u1
+ y35.x2.v1
+ y35.x1.v2
+ y35.x1.v1
+ y36.u1
+ y37.v2
- v3.s1 =
x12.x2.u1
+ y3.x2.r2
+ y3.x2.r1
+ y3.x23.v1
+ y3.x1.r2
+ y3.x13.v2
+ y32.q
+ y32.x22.u1
+ y32.x1.x2.u1
+ y32.x12.u1
+ y33.r2
+ y33.r1
+ y33.x22.v1
+ y33.x12.v2
+ y34.s1
+ y34.x1.u1
+ y35.x1.v1
+ y36.u1
- w.r3 =
y3.x13.v2
+ y32.q
+ y32.x2.s2
+ y32.x1.s2
+ y32.x1.x2.u1
+ y33.x22.v1
+ y33.x12.v1
+ y34.s1
+ y34.x1.u1
+ y35.x1.v2
+ y37.v2
- v2.s2 =
0
- v2.s1 =
0
- v1.s2 =
0
- v1.s1 =
0
- w.r2 =
0
- w.r1 =
0
- v3.r3 =
x22.r3
+ x1.x2.r3
+ x12.r3
+ y3.x1.x22.u4
+ y3.x1.x22.u2
+ y3.x12.x2.u2
+ y3.x13.u3
+ y32.x1.r3
+ y32.x12.x23
+ y32.x15
+ y33.x1.x2.u4
+ y33.x1.x2.u2
+ y33.x12.u3
+ y33.x12.u2
+ y34.x24
+ y34.x1.x23
+ y34.x12.x22
+ y34.x13.x2
+ y34.x14
+ y35.x2.u4
+ y35.x2.u2
+ y35.x1.u4
+ y35.x1.u3
+ y36.x23
+ y36.x1.x22
+ y36.x12.x2
+ y37.u3
+ y37.u2
+ y38.v3
+ y38.x22
+ y38.x1.x2
+ y38.x12
+ x14.v2
+ y3.x23.u1
+ y3.x1.q
+ y3.x1.x2.s2
+ y3.x12.s2
+ y3.x13.u1
+ y32.x2.r2
+ y32.x23.v1
+ y32.x1.r1
+ y32.x13.v1
+ y33.q
+ y33.x12.u1
+ y34.x12.v1
+ y35.s2
+ y35.x1.u1
+ y36.x1.v2
+ y38.v1
+ y2.x13.u3
+ y34.r4
- u4.s2 =
x22.r2
+ x24.v1
+ x1.x2.r1
+ x14.v1
+ y3.x23.u1
+ y3.x1.x2.s2
+ y3.x12.s2
+ y32.x2.r2
+ y32.x2.r1
+ y32.x1.r1
+ y32.x13.v2
+ y32.x13.v1
+ y33.x2.s2
+ y33.x22.u1
+ y33.x1.s2
+ y33.x1.x2.u1
+ y33.x12.u1
+ y34.r2
+ y34.r1
+ y34.x22.v1
+ y34.x12.v2
+ y34.x12.v1
+ y35.s2
+ y35.x2.u1
+ y35.x1.u1
+ y36.x1.v2
+ y36.x1.v1
+ y37.u1
+ y38.v1
+ y2.x13.u3
+ y1.x13.u3
- u4.s1 =
y3.x2.q
+ y3.x22.s2
+ y3.x23.u1
+ y3.x12.x2.u1
+ y32.x2.r2
+ y32.x2.r1
+ y32.x23.v1
+ y32.x1.r2
+ y32.x13.v2
+ y33.x2.s2
+ y33.x22.u1
+ y33.x1.s2
+ y33.x1.x2.u1
+ y34.r2
+ y34.r1
+ y38.v2
+ y1.x13.u3
- u3.s2 =
x1.x2.r2
+ x12.r1
+ x14.v2
+ y3.x22.s2
+ y3.x1.x2.s2
+ y3.x12.s2
+ y32.x1.r1
+ y33.x22.u1
+ y33.x1.x2.u1
+ y33.x12.u1
+ y36.x1.v1
+ y1.x13.u3
- u3.s1 =
y3.x1.q
+ y3.x1.x2.s2
+ y32.x2.r2
+ y32.x23.v1
+ y32.x13.v2
+ y33.x22.u1
+ y33.x1.s2
+ y33.x12.u1
+ y34.r2
+ y34.r1
+ y34.x12.v2
+ y35.s2
+ y36.x2.v1
+ y36.x1.v2
+ y36.x1.v1
+ y37.u1
+ y38.v1
+ y1.x13.u3
- u2.s2 =
x22.r2
+ x24.v1
+ x1.x2.r2
+ x14.v1
+ y3.x23.u1
+ y3.x1.q
+ y3.x12.s2
+ y32.x2.r1
+ y32.x23.v1
+ y32.x13.v2
+ y32.x13.v1
+ y33.q
+ y34.r2
+ y34.r1
+ y34.x12.v1
+ y35.x1.u1
+ y36.x2.v1
+ y36.x1.v2
+ y36.x1.v1
+ y37.u1
+ y38.v2
+ y2.x13.u3
+ y1.x13.u3
+ y12.x1.r4
- u2.s1 =
y3.x2.q
+ y3.x22.s2
+ y3.x23.u1
+ y3.x1.x2.s2
+ y3.x12.x2.u1
+ y32.x1.r2
+ y32.x1.r1
+ y32.x13.v2
+ y33.q
+ y33.x1.x2.u1
+ y34.x22.v1
+ y34.x12.v1
+ y35.s1
+ y35.x1.u1
+ y36.x1.v2
+ y37.u1
+ y38.v2
+ y3.w.r4
+ y12.x1.r4
- v3.r2 =
x22.r2
+ x1.x2.r2
+ x12.r2
+ y3.x23.u1
+ y3.x1.q
+ y3.x12.x2.u1
+ y3.x13.u1
+ y32.x13.v2
+ y33.q
+ y33.x2.s2
+ y33.x22.u1
+ y33.x1.s2
+ y34.x22.v1
+ y34.x12.v1
+ y35.s2
+ y35.s1
+ y35.x1.u1
+ y38.v1
- v3.r1 =
x22.r1
+ x1.x2.r1
+ x12.r1
+ y3.x2.q
+ y3.x22.s2
+ y3.x23.u1
+ y3.x1.x2.s2
+ y3.x12.x2.u1
+ y3.x13.u1
+ y32.x2.r1
+ y32.x1.r1
+ y32.x13.v2
+ y33.q
+ y33.x2.s2
+ y33.x22.u1
+ y33.x1.s2
+ y34.r2
+ y34.x12.v2
+ y35.x2.u1
+ y35.x1.u1
+ y36.x1.v2
+ y37.u1
+ y38.v2
+ y38.v1
- v2.r3 =
x14.v2
+ y3.x2.q
+ y3.x22.s2
+ y3.x1.q
+ y3.x13.u1
+ y32.x2.r2
+ y32.x1.r1
+ y32.x13.v2
+ y32.x13.v1
+ y33.x2.s2
+ y33.x22.u1
+ y33.x1.s2
+ y33.x12.u1
+ y34.x22.v1
+ y34.x12.v2
+ y34.x12.v1
+ y35.s2
+ y35.x2.u1
+ y36.x1.v2
+ y36.x1.v1
+ y37.u1
+ y38.v2
+ y38.v1
+ y1.x13.u3
- v1.r3 =
y3.x2.q
+ y3.x22.s2
+ y3.x1.x2.s2
+ y3.x12.s2
+ y3.x12.x2.u1
+ y3.x13.u1
+ y32.x2.r2
+ y32.x1.r1
+ y32.x13.v2
+ y32.x13.v1
+ y33.x22.u1
+ y33.x12.u1
+ y34.r2
+ y34.x12.v2
+ y34.x12.v1
+ y35.s1
+ y35.x2.u1
+ y35.x1.u1
+ y36.x2.v1
+ y36.x1.v2
+ y38.v1
+ y2.x13.u3
+ y1.x13.u3
- u1.s2 =
0
- u1.s1 =
0
- v2.r2 =
0
- v2.r1 =
0
- v1.r2 =
0
- v1.r1 =
0
- w.q =
0
- u4.r3 =
x1.x23.u4
+ x1.x23.u2
+ x12.x22.u2
+ x14.u4
+ y3.x12.r3
+ y3.x12.x24
+ y3.x16
+ y32.x1.x22.u4
+ y32.x1.x22.u2
+ y32.x12.x2.u2
+ y32.x13.u4
+ y33.x25
+ y33.x1.x24
+ y33.x12.x23
+ y33.x13.x22
+ y33.x15
+ y34.x22.u4
+ y34.x22.u2
+ y34.x1.x2.u4
+ y34.x12.u4
+ y35.x24
+ y35.x1.x23
+ y35.x12.x22
+ y35.x13.x2
+ y35.x14
+ y36.x2.u2
+ y36.x1.u4
+ y37.x12.x2
+ y37.x13
+ y38.u4
+ y39.x1.x2
+ y39.x12
+ x24.u1
+ x13.x2.u1
+ y3.x22.r2
+ y3.x24.v1
+ y3.x1.x2.r2
+ y3.x14.v1
+ y32.x1.x2.s2
+ y32.x12.x2.u1
+ y33.x2.r2
+ y33.x23.v1
+ y33.x1.r2
+ y33.x1.r1
+ y33.x13.v2
+ y34.x1.x2.u1
+ y35.r1
+ y35.x22.v1
+ y35.x12.v2
+ y35.x12.v1
+ y36.s2
+ y36.x1.u1
+ y37.x1.v1
+ y33.x2.r4
+ y32.w.r4
- u3.r3 =
x12.x22.u4
+ x12.x22.u2
+ x13.x2.u2
+ x14.u3
+ y3.x12.r3
+ y3.x13.x23
+ y3.x16
+ y32.x12.x2.u4
+ y32.x12.x2.u2
+ y32.x13.u3
+ y32.x13.u2
+ y33.x1.x24
+ y33.x12.x23
+ y33.x13.x22
+ y33.x14.x2
+ y33.x15
+ y34.x1.x2.u4
+ y34.x1.x2.u2
+ y34.x12.u4
+ y34.x12.u3
+ y35.x1.x23
+ y35.x12.x22
+ y35.x13.x2
+ y36.x1.u3
+ y36.x1.u2
+ y38.u3
+ x14.u1
+ y3.x22.r2
+ y3.x24.v1
+ y3.x1.x2.r1
+ y3.x14.v2
+ y3.x14.v1
+ y32.x23.u1
+ y32.x1.q
+ y33.x2.r1
+ y33.x23.v1
+ y33.x13.v1
+ y34.x22.u1
+ y34.x1.x2.u1
+ y35.r1
+ y36.s2
+ y36.s1
+ y36.x2.u1
+ y37.x2.v1
+ y37.x1.v2
+ y38.u1
+ y1.x16
+ y33.x1.r4
- u2.r3 =
x1.x23.u4
+ x1.x23.u2
+ x13.x2.u4
+ x14.u2
+ y3.x1.x2.r3
+ y3.x13.x23
+ y3.x14.x22
+ y32.x23.u4
+ y32.x1.x22.u2
+ y32.x13.u2
+ y33.x2.r3
+ y33.x1.r3
+ y33.x1.x24
+ y33.x13.x22
+ y33.x14.x2
+ y33.x15
+ y34.x22.u2
+ y34.x1.x2.u4
+ y34.x1.x2.u2
+ y34.x12.u2
+ y35.r3
+ y35.x24
+ y35.x1.x23
+ y35.x12.x22
+ y35.x14
+ y36.x2.u4
+ y36.x1.u3
+ y36.x1.u2
+ y37.x23
+ y37.x1.x22
+ y37.x12.x2
+ y37.x13
+ y38.u3
+ y38.u2
+ y39.x12
+ x24.u1
+ x13.x2.u1
+ y3.x22.r1
+ y3.x24.v1
+ y3.x12.r2
+ y3.x14.v1
+ y32.x2.q
+ y32.x22.s2
+ y32.x23.u1
+ y32.x12.x2.u1
+ y32.x13.u1
+ y33.x2.r2
+ y33.x2.r1
+ y33.x13.v2
+ y34.x22.u1
+ y35.r2
+ y35.r1
+ y35.x12.v1
+ y36.s2
+ y36.x2.u1
+ y36.x1.u1
+ y37.x2.v1
+ y39.v2
+ y3.v3.r4
+ y3.x22.r4
+ y3.x1.x2.r4
+ y3.x12.r4
+ y35.r4
+ y3.v2.r4
+ y3.v1.r4
- u4.r2 =
x24.u1
+ x1.x2.q
+ y3.x12.r2
+ y3.x12.r1
+ y3.x14.v2
+ y32.x2.q
+ y32.x23.u1
+ y32.x12.s2
+ y32.x12.x2.u1
+ y32.x13.u1
+ y33.x23.v1
+ y33.x1.r2
+ y33.x1.r1
+ y33.x13.v2
+ y33.x13.v1
+ y34.x22.u1
+ y35.r1
+ y36.s2
+ y36.s1
+ y36.x1.u1
+ y37.x1.v1
+ y38.u1
+ y1.x16
- u4.r1 =
x22.q
+ x23.s2
+ x24.u1
+ x1.x22.s2
+ y3.x22.r1
+ y3.x1.x2.r2
+ y3.x14.v2
+ y32.x2.q
+ y32.x23.u1
+ y32.x12.s2
+ y32.x12.x2.u1
+ y32.x13.u1
+ y33.x2.r2
+ y33.x1.r2
+ y33.x1.r1
+ y33.x13.v2
+ y34.x2.s2
+ y34.x1.x2.u1
+ y35.x12.v2
+ y35.x12.v1
+ y37.x1.v2
+ y1.x16
- u3.r2 =
x12.q
+ x14.u1
+ y3.x22.r2
+ y3.x24.v1
+ y3.x1.x2.r2
+ y3.x1.x2.r1
+ y3.x12.r1
+ y3.x14.v1
+ y32.x22.s2
+ y32.x23.u1
+ y32.x1.q
+ y32.x1.x2.s2
+ y32.x12.s2
+ y32.x12.x2.u1
+ y33.x2.r1
+ y33.x23.v1
+ y33.x1.r2
+ y34.x2.s2
+ y34.x1.s2
+ y34.x1.x2.u1
+ y35.r1
+ y36.s1
+ y37.x2.v1
+ y37.x1.v2
+ y37.x1.v1
+ y39.v2
+ y39.v1
+ y1.x16
- u3.r1 =
x1.x2.q
+ x1.x22.s2
+ x12.x2.s2
+ x14.u1
+ y3.x22.r2
+ y3.x24.v1
+ y3.x1.x2.r2
+ y3.x14.v1
+ y32.x22.s2
+ y32.x23.u1
+ y32.x1.q
+ y32.x1.x2.s2
+ y32.x12.s2
+ y32.x12.x2.u1
+ y33.x2.r1
+ y33.x23.v1
+ y33.x13.v2
+ y34.x1.s2
+ y34.x12.u1
+ y35.r2
+ y35.r1
+ y35.x22.v1
+ y36.s2
+ y37.x1.v2
+ y38.u1
+ y39.v1
+ y1.x16
- u2.r2 =
x24.u1
+ x1.x22.s2
+ x12.x2.s2
+ x13.x2.u1
+ y3.x22.r2
+ y3.x22.r1
+ y3.x1.x2.r1
+ y3.x14.v1
+ y32.x12.x2.u1
+ y32.x13.u1
+ y33.x2.r2
+ y33.x2.r1
+ y33.x1.r2
+ y33.x1.r1
+ y34.q
+ y34.x22.u1
+ y34.x1.s2
+ y35.r2
+ y35.r1
+ y35.x12.v2
+ y35.x12.v1
+ y36.s1
+ y36.x1.u1
+ y38.u1
+ y3.v2.r4
+ y3.v1.r4
+ y32.w.r4
- u2.r1 =
x22.q
+ x23.s2
+ x24.u1
+ x1.x2.q
+ x1.x22.s2
+ x13.x2.u1
+ y3.x22.r2
+ y3.x24.v1
+ y3.x1.x2.r2
+ y3.x12.r2
+ y32.x2.q
+ y33.x1.r2
+ y33.x13.v1
+ y34.q
+ y34.x2.s2
+ y34.x12.u1
+ y35.r1
+ y35.x12.v1
+ y38.u1
+ y39.v1
+ y3.v1.r4
+ y32.w.r4
- u1.r3 =
x13.x2.u1
+ x14.u1
+ y3.x1.x2.r1
+ y3.x12.r1
+ y3.x14.v2
+ y32.x22.s2
+ y32.x1.q
+ y32.x1.x2.s2
+ y32.x12.s2
+ y32.x12.x2.u1
+ y32.x13.u1
+ y33.x2.r2
+ y33.x1.r1
+ y34.x1.s2
+ y35.x22.v1
+ y35.x12.v2
+ y35.x12.v1
+ y36.s2
+ y36.s1
+ y36.x1.u1
+ y37.x2.v1
+ y37.x1.v1
+ y38.u1
+ y39.v1
+ y32.w.r4
- v3.q =
x22.q
+ x1.x2.q
+ x12.q
+ y3.x22.r2
+ y3.x24.v1
+ y3.x1.x2.r2
+ y3.x14.v1
+ y32.x1.q
+ y32.x1.x2.s2
+ y32.x13.u1
+ y33.x2.r2
+ y33.x2.r1
+ y33.x23.v1
+ y33.x1.r1
+ y33.x13.v2
+ y33.x13.v1
+ y34.q
+ y34.x2.s2
+ y35.r1
+ y35.x12.v1
+ y36.s2
+ y36.s1
+ y36.x2.u1
+ y36.x1.u1
+ y37.x1.v2
+ y32.w.r4
- u1.r2 =
0
- u1.r1 =
0
- v2.q =
0
- v1.q =
0
- u4.q =
x23.r2
+ x25.v1
+ x1.x22.r2
+ x15.v1
+ y3.x1.x22.s2
+ y3.x12.q
+ y3.x13.s2
+ y3.x13.x2.u1
+ y3.x14.u1
+ y32.x22.r2
+ y32.x22.r1
+ y32.x24.v1
+ y32.x1.x2.r1
+ y33.x2.q
+ y33.x22.s2
+ y33.x13.u1
+ y34.x2.r1
+ y34.x13.v2
+ y35.x2.s2
+ y35.x22.u1
+ y35.x1.s2
+ y35.x12.u1
+ y36.r1
+ y36.x12.v2
+ y37.s2
+ y37.s1
+ y37.x2.u1
+ y38.x2.v1
+ y38.x1.v1
+ y39.u1
+ y2.x14.u3
+ y1.x14.u3
+ y32.v1.r4
- u3.q =
x1.x22.r2
+ x12.x2.r2
+ y3.x23.s2
+ y3.x1.x22.s2
+ y3.x12.q
+ y3.x13.s2
+ y3.x13.x2.u1
+ y32.x22.r2
+ y32.x24.v1
+ y32.x1.x2.r2
+ y32.x12.r1
+ y32.x14.v2
+ y32.x14.v1
+ y33.x1.q
+ y33.x1.x2.s2
+ y33.x13.u1
+ y34.x2.r1
+ y34.x23.v1
+ y34.x13.v1
+ y35.x22.u1
+ y35.x1.x2.u1
+ y36.r1
+ y36.x12.v2
+ y37.s2
+ y37.s1
+ y37.x2.u1
+ y38.x2.v1
+ y38.x1.v2
+ y38.x1.v1
+ y39.u1
+ y32.v2.r4
+ y32.v1.r4
- u2.q =
x23.r2
+ x25.v1
+ x1.x22.r2
+ x1.x22.r1
+ x12.x2.r1
+ x15.v1
+ y3.x23.s2
+ y3.x24.u1
+ y3.x1.x2.q
+ y3.x12.q
+ y3.x13.x2.u1
+ y3.x14.u1
+ y32.x1.x2.r2
+ y32.x12.r2
+ y32.x14.v2
+ y32.x14.v1
+ y33.x2.q
+ y33.x22.s2
+ y33.x23.u1
+ y33.x1.q
+ y33.x12.s2
+ y33.x12.x2.u1
+ y34.x2.r2
+ y34.x2.r1
+ y34.x23.v1
+ y34.x1.r2
+ y34.x1.r1
+ y35.x2.s2
+ y35.x1.s2
+ y35.x1.x2.u1
+ y36.r2
+ y36.x22.v1
+ y36.x12.v1
+ y38.x2.v1
+ y38.x1.v2
+ y38.x1.v1
+ y310.v2
+ y310.v1
+ y2.x14.u3
+ y1.x14.u3
+ y3.u1.r4
- s22 =
0
- s1.s2 =
0
- s12 =
0
- u1.q =
0
- s2.r3 =
x1.x22.q
+ x1.x23.s2
+ x12.x2.q
+ x14.s2
+ y3.x1.x22.r2
+ y3.x13.r1
+ y3.x15.v2
+ y32.x1.x2.q
+ y32.x1.x22.s2
+ y32.x12.q
+ y32.x12.x2.s2
+ y32.x13.x2.u1
+ y33.x22.r2
+ y33.x24.v1
+ y33.x1.x2.r2
+ y33.x14.v2
+ y33.x14.v1
+ y34.x22.s2
+ y34.x23.u1
+ y34.x13.u1
+ y35.x2.r2
+ y35.x2.r1
+ y35.x23.v1
+ y35.x1.r1
+ y35.x13.v1
+ y36.x2.s2
+ y36.x22.u1
+ y36.x1.s2
+ y37.r1
+ y37.x22.v1
+ y37.x12.v1
+ y39.x1.v2
+ y39.x1.v1
+ y311.v1
+ y33.v2.r4
+ y33.v1.r4
+ y34.w.r4
- s1.r3 =
y3.x1.x22.r2
+ y3.x12.x2.r2
+ y3.x13.r2
+ y3.x13.r1
+ y32.x22.q
+ y32.x24.u1
+ y32.x1.x22.s2
+ y32.x12.q
+ y32.x12.x2.s2
+ y32.x13.x2.u1
+ y33.x1.x2.r2
+ y33.x12.r2
+ y33.x14.v2
+ y34.x22.s2
+ y34.x1.q
+ y35.x2.r1
+ y35.x23.v1
+ y35.x1.r1
+ y36.q
+ y36.x1.x2.u1
+ y36.x12.u1
+ y37.r2
+ y37.r1
+ y37.x12.v2
+ y38.s1
+ y39.x1.v2
+ y310.u1
+ y32.u1.r4
+ y33.v1.r4
- s2.r2 =
0
- s2.r1 =
0
- s1.r2 =
0
- s1.r1 =
0
- r32 =
x13.x25
+ x14.x24
+ x15.x23
+ x18
+ y3.x12.x23.u4
+ y3.x14.x2.u4
+ y32.x1.x22.r3
+ y32.x1.x26
+ y32.x12.x2.r3
+ y32.x12.x25
+ y32.x13.x24
+ y32.x15.x22
+ y33.x24.u2
+ y33.x12.x22.u4
+ y33.x13.x2.u4
+ y33.x14.u4
+ y34.x22.r3
+ y34.x26
+ y34.x1.x2.r3
+ y34.x1.x25
+ y34.x14.x22
+ y35.x23.u4
+ y35.x23.u2
+ y35.x12.x2.u4
+ y35.x12.x2.u2
+ y35.x13.u4
+ y35.x13.u3
+ y35.x13.u2
+ y36.x2.r3
+ y36.x1.r3
+ y36.x12.x23
+ y36.x13.x22
+ y36.x14.x2
+ y37.x22.u2
+ y37.x1.x2.u2
+ y37.x12.u4
+ y38.x24
+ y38.x13.x2
+ y38.x14
+ y39.x2.u4
+ y39.x1.u4
+ y310.x12.x2
+ y310.x13
+ y311.u4
+ y311.u2
+ y312.v3
+ y312.x22
+ y312.x12
+ y32.x12.x2.r1
+ y32.x13.r1
+ y32.x15.v2
+ y33.x12.q
+ y33.x13.x2.u1
+ y33.x14.u1
+ y34.x22.r2
+ y34.x22.r1
+ y34.x1.x2.r2
+ y34.x12.r2
+ y34.x12.r1
+ y34.x14.v1
+ y35.x2.q
+ y35.x22.s2
+ y35.x1.q
+ y36.x2.r1
+ y36.x23.v1
+ y36.x13.v1
+ y37.q
+ y37.x22.u1
+ y37.x1.x2.u1
+ y38.r2
+ y38.x12.v2
+ y39.s2
+ y39.x1.u1
+ y310.x2.v1
+ y310.x1.v1
+ y312.v1
+ y32.x1.x22.r4
+ y32.x12.x2.r4
+ y33.u3.r4
+ y33.u2.r4
+ y34.v3.r4
+ y36.x2.r4
+ y36.x1.r4
+ y33.u1.r4
- r2.r3 =
x12.x22.r2
+ x12.x22.r1
+ x13.x2.r1
+ x14.r2
+ y3.x23.q
+ y3.x24.s2
+ y3.x1.x22.q
+ y3.x12.x22.s2
+ y3.x13.x2.s2
+ y3.x14.s2
+ y3.x15.u1
+ y32.x25.v1
+ y32.x1.x22.r1
+ y32.x12.x2.r1
+ y32.x13.r2
+ y32.x13.r1
+ y32.x15.v2
+ y32.x15.v1
+ y33.x24.u1
+ y33.x1.x2.q
+ y33.x1.x22.s2
+ y33.x12.q
+ y33.x13.x2.u1
+ y34.x22.r1
+ y34.x1.x2.r1
+ y34.x12.r1
+ y34.x14.v1
+ y35.x2.q
+ y35.x22.s2
+ y35.x12.s2
+ y35.x12.x2.u1
+ y35.x13.u1
+ y36.x1.r2
+ y36.x13.v1
+ y37.q
+ y37.x2.s2
+ y37.x1.s2
+ y38.r2
+ y38.x12.v1
+ y39.s2
+ y39.x1.u1
+ y310.x2.v1
+ y310.x1.v1
+ y3.x1.u1.r4
+ y33.u1.r4
+ y34.v2.r4
+ y34.v1.r4
- r1.r3 =
x1.x23.r2
+ x12.x22.r2
+ x12.x22.r1
+ x14.r1
+ y3.x23.q
+ y3.x25.u1
+ y3.x12.x22.s2
+ y3.x13.q
+ y3.x13.x2.s2
+ y3.x14.x2.u1
+ y3.x15.u1
+ y32.x1.x22.r2
+ y32.x1.x22.r1
+ y32.x12.x2.r2
+ y32.x13.r1
+ y32.x15.v2
+ y33.x23.s2
+ y33.x24.u1
+ y33.x13.s2
+ y33.x14.u1
+ y34.x22.r1
+ y34.x24.v1
+ y34.x1.x2.r1
+ y34.x12.r2
+ y34.x14.v2
+ y34.x14.v1
+ y35.x2.q
+ y35.x22.s2
+ y35.x23.u1
+ y35.x12.s2
+ y35.x12.x2.u1
+ y35.x13.u1
+ y36.x2.r2
+ y36.x23.v1
+ y36.x1.r2
+ y37.q
+ y37.x2.s2
+ y37.x1.x2.u1
+ y37.x12.u1
+ y38.r1
+ y38.x12.v2
+ y38.x12.v1
+ y39.s2
+ y39.x2.u1
+ y310.x1.v2
+ y310.x1.v1
+ y312.v2
+ y3.x2.u1.r4
+ y32.x2.v1.r4
+ y32.x1.v1.r4
+ y33.u1.r4
- r22 =
0
- r1.r2 =
0
- r12 =
0
- s2.q =
0
- s1.q =
0
- r3.q =
x1.x23.q
+ x1.x24.s2
+ x13.x22.s2
+ x14.q
+ y3.x12.x22.r2
+ y3.x13.x2.r2
+ y32.x23.q
+ y32.x24.s2
+ y32.x25.u1
+ y32.x1.x23.s2
+ y32.x12.x2.q
+ y32.x13.q
+ y32.x13.x2.s2
+ y33.x23.r1
+ y33.x25.v1
+ y33.x12.x2.r2
+ y33.x12.x2.r1
+ y33.x13.r2
+ y33.x13.r1
+ y33.x15.v2
+ y33.x15.v1
+ y34.x24.u1
+ y34.x12.q
+ y34.x12.x2.s2
+ y34.x14.u1
+ y35.x22.r1
+ y35.x24.v1
+ y35.x12.r2
+ y35.x14.v1
+ y36.x22.s2
+ y36.x1.q
+ y36.x1.x2.s2
+ y37.x2.r2
+ y37.x2.r1
+ y37.x23.v1
+ y37.x1.r2
+ y37.x13.v2
+ y37.x13.v1
+ y38.q
+ y38.x22.u1
+ y38.x1.s2
+ y38.x12.u1
+ y39.r2
+ y39.r1
+ y39.x22.v1
+ y39.x12.v2
+ y39.x12.v1
+ y310.s2
+ y311.x2.v1
+ y311.x1.v2
+ y311.x1.v1
+ y313.v1
+ y32.s2.r4
+ y32.s1.r4
+ y32.x2.u1.r4
+ y33.x1.v2.r4
+ y33.x1.v1.r4
+ y35.v2.r4
+ y35.v1.r4
- r2.q =
0
- r1.q =
0
- q2 =
0
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y12.y2 =
0
- y13 =
0
- y1.y2.x1 =
y12.x1
- y12.x2 =
0
- y12.x12 =
0
- y1.y2.u3 =
0
- y12.u3 =
0
- y12.u2 =
0
- y1.x1.u2 =
0
- x1.x22.u1 =
x12.x2.u1
+ y3.x2.r2
+ y3.x23.v1
+ y3.x1.r1
+ y3.x13.v2
+ y3.x13.v1
+ y32.x22.u1
+ y32.x1.s2
+ y32.x12.u1
+ y33.r2
+ y33.r1
+ y33.x12.v2
+ y34.s2
+ y34.x1.u1
+ y35.x2.v1
+ y35.x1.v2
+ y36.u1
+ y37.v1
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 18 onwards, and
Benson's tests detect stability from degree 18
onwards.
This cohomology ring has dimension 4 and depth 1.
Here is a homogeneous system of parameters:
- h1 =
r4
in degree 8
- h2 =
x22
+ x1.x2
+ x12
+ y34
in degree 4
- h3 =
x1.x22
+ x12.x2
+ y32.x22
+ y32.x1.x2
+ y32.x12
in degree 6
- h4 =
y3
in degree 1
The first
term h1 forms
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, 4, 8, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y2
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
x1
in degree 2
-
y12
in degree 2
-
w
in degree 3
-
y2.x1
in degree 3
-
y1.x2
in degree 3
-
y1.x1
in degree 3
-
v3
in degree 4
-
x1.x2
in degree 4
-
x12
in degree 4
-
v2
in degree 4
-
v1
in degree 4
-
u4
in degree 5
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
y1.x12
in degree 5
-
x12.x2
in degree 6
-
x2.v1
in degree 6
-
x1.v2
in degree 6
-
x1.v1
in degree 6
-
y2.u3
in degree 6
-
y1.u3
in degree 6
-
y1.u2
in degree 6
-
x2.u4
in degree 7
-
x2.u2
in degree 7
-
x1.u4
in degree 7
-
x1.u3
in degree 7
-
x1.u2
in degree 7
-
s2
in degree 7
-
s1
in degree 7
-
x2.u1
in degree 7
-
x1.u1
in degree 7
-
r3
in degree 8
-
r2
in degree 8
-
r1
in degree 8
-
x12.v1
in degree 8
-
y2.x1.u3
in degree 8
-
y1.x1.u3
in degree 8
-
x1.x2.u2
in degree 9
-
x12.u4
in degree 9
-
x12.u3
in degree 9
-
x12.u2
in degree 9
-
q
in degree 9
-
x2.s2
in degree 9
-
x1.s2
in degree 9
-
x1.x2.u1
in degree 9
-
x12.u1
in degree 9
-
x2.r3
in degree 10
-
x1.r3
in degree 10
-
x2.r2
in degree 10
-
x2.r1
in degree 10
-
x1.r2
in degree 10
-
x1.r1
in degree 10
-
x12.x2.u2
in degree 11
-
x2.q
in degree 11
-
x1.q
in degree 11
-
x1.x2.s2
in degree 11
-
x12.s2
in degree 11
-
x1.x2.r3
in degree 12
-
x12.r3
in degree 12
-
x1.x2.r2
in degree 12
-
x1.x2.r1
in degree 12
-
x12.r2
in degree 12
-
x12.r1
in degree 12
-
x1.x2.q
in degree 13
-
x12.q
in degree 13
-
x12.x2.s2
in degree 13
-
x12.x2.r3
in degree 14
-
x12.x2.r2
in degree 14
-
x12.x2.r1
in degree 14
-
x12.x2.q
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y2
in degree 1
-
y12
in degree 2
-
y1.h
in degree 2
-
y2.x1
in degree 3
-
y1.x1
in degree 3
-
y1.x2.h
in degree 4
-
y1.x12
in degree 5
-
x2.v1
+ x1.v2
+ w.h3
in degree 6
-
y2.u3
in degree 6
-
y1.u3
in degree 6
-
y1.u2
in degree 6
-
y2.x1.u3
in degree 8
-
y1.x1.u3
in degree 8
-
x2.u4.h
+ x1.u4.h
+ x1.u3.h
+ x2.u1.h
+ x1.u1.h
+ x12.x2.h2
+ x1.v1.h2
+ v3.h4
+ v2.h4
+ v1.h4
+ w.h5
+ x1.h6
+ h8
in degree 8
-
s2.h
+ x1.u1.h
+ x1.v1.h2
+ u1.h3
+ v2.h4
+ v1.h4
+ w.h5
in degree 8
-
x12.u3
+ u3.h4
+ v3.h5
+ v2.h5
+ v1.h5
+ h9
in degree 9
-
x2.s2
+ x1.x2.u1
+ x12.v1.h
+ x2.u1.h2
+ x1.v1.h3
+ v1.h5
+ w.h6
in degree 9
-
x1.s2
+ x12.u1
+ x12.v1.h
+ x1.u1.h2
+ x1.v2.h3
+ x1.v1.h3
+ v2.h5
+ v1.h5
in degree 9
-
x2.r2
+ x1.r1
+ x1.x2.u1.h
+ x12.u1.h
+ r2.h2
+ r1.h2
+ x1.u1.h3
+ x1.v2.h4
+ x1.v1.h4
in degree 10
-
x1.x2.s2
+ x12.x2.u1
+ x13.v1.h
+ x1.x2.u1.h2
+ x12.v1.h3
+ x1.v1.h5
+ x1.w.h6
in degree 11
-
x12.s2
+ x13.u1
+ x13.v1.h
+ x12.u1.h2
+ x12.v2.h3
+ x12.v1.h3
+ x1.v2.h5
+ x1.v1.h5
in degree 11
-
x1.x2.r2
+ x12.r1
+ x12.x2.u1.h
+ x13.u1.h
+ x1.r2.h2
+ x1.r1.h2
+ x12.u1.h3
+ x12.v2.h4
+ x12.v1.h4
in degree 12
-
x1.x2.r1
+ x12.r1
+ x1.r2.h2
+ x1.r1.h2
+ x12.u1.h3
+ s1.h5
+ x1.u1.h5
+ x1.v2.h6
+ u1.h7
+ v2.h8
+ w.h9
in degree 12
-
x12.r2
+ x1.r2.h2
+ x12.u1.h3
+ s1.h5
+ x2.u1.h5
+ x1.u1.h5
+ x1.v2.h6
+ u1.h7
in degree 12
-
x12.x2.s2
+ x13.x2.u1
+ x14.v1.h
+ x12.x2.u1.h2
+ x13.v1.h3
+ x12.v1.h5
+ x12.w.h6
in degree 13
-
x12.x2.r2
+ x13.r1
+ x13.x2.u1.h
+ x14.u1.h
+ x12.r2.h2
+ x12.r1.h2
+ x13.u1.h3
+ x13.v2.h4
+ x13.v1.h4
in degree 14
-
x12.x2.r1
+ x13.r1
+ x12.r2.h2
+ x12.r1.h2
+ x13.u1.h3
+ x1.s1.h5
+ x12.u1.h5
+ x12.v2.h6
+ x1.u1.h7
+ x1.v2.h8
+ x1.w.h9
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y2
in degree 1
-
y1
in degree 1
-
y1.y2
in degree 2
-
y12
in degree 2
-
y2.x1
in degree 3
-
y1.x2
in degree 3
-
y1.x1
in degree 3
-
y12.x1
in degree 4
-
y1.x12
in degree 5
-
x2.v1
+ x1.v2
+ y33.w
in degree 6
-
y2.u3
in degree 6
-
y1.u3
in degree 6
-
y1.u2
in degree 6
-
x2.u4
+ x1.u4
+ x1.u3
+ y3.x12.x2
+ y33.v3
+ y35.x1
+ y37
+ x2.u1
+ x1.u1
+ y3.x1.v1
+ y33.v2
+ y33.v1
+ y34.w
in degree 7
-
y2.x1.u3
in degree 8
-
y1.x2.u2
in degree 8
-
y1.x1.u3
in degree 8
A basis for AnnR/(h1)(h2) is as follows.
-
y1.y2
in degree 2
-
y12
in degree 2
-
y12.x1
in degree 4
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- v3 restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- u4 restricts to
0
- s1 restricts to
0
- s2 restricts to
0
- r1 restricts to
0
- r2 restricts to
0
- r3 restricts to
0
- r4 restricts to
y8
- q restricts to
0
Restriction to special subgroup number 2, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
y42
+ y2.y4
- x2 restricts to
y32
+ y2.y3
- w restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- v3 restricts to
y44
+ y32.y42
+ y34
+ y22.y42
+ y22.y32
+ y12.y22
- u1 restricts to
0
- u2 restricts to
y32.y43
+ y34.y4
+ y2.y44
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y12.y2.y42
+ y12.y22.y4
+ y12.y23
+ y14.y2
- u3 restricts to
y3.y44
+ y32.y43
+ y2.y32.y42
+ y22.y3.y42
+ y12.y2.y42
+ y12.y22.y4
- u4 restricts to
y33.y42
+ y34.y4
+ y2.y44
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y12.y2.y32
+ y12.y22.y3
- s1 restricts to
0
- s2 restricts to
0
- r1 restricts to
0
- r2 restricts to
0
- r3 restricts to
y48
+ y33.y45
+ y34.y44
+ y35.y43
+ y2.y3.y46
+ y2.y32.y45
+ y2.y33.y44
+ y2.y35.y42
+ y22.y46
+ y22.y3.y45
+ y22.y32.y44
+ y22.y33.y43
+ y23.y45
+ y23.y3.y44
+ y23.y33.y42
+ y24.y44
+ y24.y3.y43
+ y25.y43
+ y25.y3.y42
+ y25.y32.y4
+ y26.y42
+ y26.y3.y4
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y23.y3.y42
+ y12.y23.y32.y4
+ y12.y24.y32
+ y12.y25.y4
+ y12.y26
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y23.y4
+ y16.y22
- r4 restricts to
y48
+ y33.y45
+ y34.y44
+ y35.y43
+ y38
+ y2.y33.y44
+ y2.y34.y43
+ y2.y35.y42
+ y2.y36.y4
+ y22.y32.y44
+ y22.y34.y42
+ y22.y35.y4
+ y22.y36
+ y23.y32.y43
+ y23.y34.y4
+ y23.y35
+ y24.y33.y4
+ y25.y33
+ y26.y42
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y25.y4
+ y12.y25.y3
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y3.y4
+ y14.y23.y4
+ y14.y23.y3
+ y18
- q restricts to
0
(1 + 2t + 2t2
+ 2t3 + 3t4 + 4t5
+ 4t6 + 5t7 + 5t8
+ 5t9 + 5t10 + 4t11
+ 3t12 + t13 + t14
+ t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128