Small group number 859 of order 128
G is the group 128gp859
G has 3 minimal generators, rank 4 and exponent 4.
The centre has rank 1.
There are 3 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 4, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 13 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2
- x2 in degree 2
- x3 in degree 2
- w in degree 3
- u1 in degree 5
- u2 in degree 5
- t1 in degree 6
- t2 in degree 6
- s in degree 7
- r in degree 8, a regular element
There are 44 minimal relations:
- y1.y3 =
0
- y12 =
0
- y3.x3 =
y1.x1
- y3.x1 =
y1.x1
- y22.y3 =
y1.x2
- x1.x3 =
x12
+ y1.y2.x1
- y3.w =
y2.y3.x2
- y1.w =
y1.y2.x2
- y1.x22 =
y1.y22.x2
- w2 =
x22.x3
+ y22.x22
+ y24.x1
+ y1.y23.x2
- y3.u2 =
y32.x22
+ y2.y3.x22
+ y2.y33.x2
+ y1.y23.x1
- y1.u2 =
y1.y23.x2
+ y1.y23.x1
- y1.u1 =
0
- x3.u2 =
x32.w
+ x2.x3.w
+ y2.x2.x32
+ y2.x12.x2
+ y22.x3.w
+ y22.x1.w
+ y23.x2.x3
+ y23.x1.x2
+ y1.t2
+ y1.y22.x12
+ y1.y24.x2
- x3.u1 =
x1.x2.w
+ y2.x1.x22
+ y2.x12.x2
+ y23.x12
+ y1.t1
+ y1.x13
+ y1.y22.x12
+ y1.y24.x2
+ y1.y24.x1
- x2.u2 =
x2.x3.w
+ x22.w
+ y3.x23
+ y2.x22.x3
+ y2.x1.x22
+ y2.y32.x22
+ y22.u1
+ y22.x2.w
+ y23.x22
+ y23.x1.x2
+ y25.x1
+ y1.y24.x2
+ y1.y24.x1
- x1.u2 =
x1.x2.w
+ x12.w
+ y1.t1
+ y1.x13
+ y1.y24.x2
+ y1.y24.x1
- x1.u1 =
x1.x2.w
+ y2.x1.x22
+ y2.x12.x2
+ y23.x12
+ y1.t1
+ y1.x13
+ y1.y22.x12
+ y1.y24.x2
+ y1.y24.x1
- y3.t2 =
y3.x23
+ y32.u1
+ y1.t1
+ y1.x13
+ y1.y22.x12
+ y1.y24.x2
- y3.t1 =
y33.x22
+ y2.y3.u1
+ y2.y32.x22
+ y2.y34.x2
+ y1.t1
- w.u2 =
x22.x32
+ x23.x3
+ y2.x2.x3.w
+ y2.x1.x2.w
+ y2.y3.x23
+ y22.x23
+ y22.x1.x22
+ y23.u1
+ y23.x2.w
+ y24.x22
+ y24.x12
+ y26.x1
+ y1.y25.x2
+ y1.y25.x1
- w.u1 =
x1.x23
+ y2.x2.u1
+ y2.x1.x2.w
+ y22.x1.x22
+ y23.x1.w
- x3.t1 =
x1.t1
+ y2.x32.w
+ y2.x12.w
+ y22.x22.x3
+ y22.x1.x22
+ y23.x3.w
+ y23.x1.w
+ y24.x2.x3
+ y24.x1.x2
+ y1.y2.t1
+ y1.y25.x2
- x1.t2 =
x1.t1
+ x1.x23
+ x12.x22
+ x14
+ y22.x13
+ y23.x1.w
+ y24.x12
+ y1.y2.x13
+ y1.y23.x12
+ y1.y25.x1
- y3.s =
y3.x2.u1
+ y2.y3.x23
+ y2.y33.x22
+ y2.y35.x2
+ y1.y23.x12
+ y1.y25.x2
+ y1.y25.x1
- y1.s =
y1.y2.t2
+ y1.y2.t1
+ y1.y2.x13
+ y1.y25.x1
- w.t2 =
x3.s
+ x33.w
+ x22.x3.w
+ x23.w
+ x12.x2.w
+ y2.x3.t2
+ y2.x2.t2
+ y2.x2.x33
+ y2.x22.x32
+ y2.x24
+ y2.x1.t1
+ y2.x12.x22
+ y2.x13.x2
+ y2.x14
+ y22.x32.w
+ y22.x22.w
+ y23.x2.x32
+ y23.x23
+ y23.x1.x22
+ y23.x13
+ y24.x3.w
+ y24.x2.w
+ y25.x2.x3
+ y25.x22
+ y1.x1.t1
+ y1.y22.t2
+ y1.y26.x2
- w.t1 =
x1.s
+ x12.x2.w
+ y2.x2.t1
+ y2.x22.x32
+ y2.x13.x2
+ y22.x2.x3.w
+ y22.x22.w
+ y22.x1.x2.w
+ y23.x23
+ y24.x1.w
+ y25.x12
+ y27.x1
+ y1.x1.t1
+ y1.y22.x13
+ y1.y26.x2
- u22 =
x22.x33
+ x24.x3
+ y32.x24
+ y22.x24
+ y22.x12.x22
+ y24.x22.x3
+ y24.x13
+ y1.y25.x12
- u1.u2 =
x1.x24
+ x12.x23
+ y3.x22.u1
+ y2.x22.u1
+ y2.x12.x2.w
+ y2.y32.x2.u1
+ y23.x1.x2.w
+ y23.x12.w
+ y24.x12.x2
+ y1.y23.t1
+ y1.y23.x13
+ y1.y25.x12
+ y1.y27.x2
+ y1.y27.x1
- u12 =
x1.x24
+ y3.x22.u1
+ y32.x24
+ y33.x2.u1
+ y35.u1
+ y36.x22
+ y2.y3.x24
+ y2.y35.x22
+ y22.x12.x22
+ y24.x1.x22
+ y26.x12
+ y1.y27.x2
+ y32.r
- w.s =
x22.t2
+ x22.x33
+ x24.x3
+ x25
+ x12.x23
+ y3.x22.u1
+ y2.x3.s
+ y2.x33.w
+ y2.x2.s
+ y2.x1.s
+ y2.x12.x2.w
+ y2.x13.w
+ y22.x3.t2
+ y22.x2.x33
+ y22.x23.x3
+ y22.x24
+ y22.x1.t1
+ y22.x12.x22
+ y22.x13.x2
+ y22.x14
+ y23.x32.w
+ y23.x22.w
+ y23.x12.w
+ y24.t1
+ y24.x2.x32
+ y24.x22.x3
+ y24.x1.x22
+ y24.x13
+ y25.x2.w
+ y26.x2.x3
+ y26.x12
+ y27.w
+ y28.x2
+ y28.x1
+ y1.y23.t2
+ y1.y23.x13
+ y1.y27.x2
+ y1.y27.x1
- u2.t2 =
x32.s
+ x34.w
+ x2.x3.s
+ x2.x33.w
+ x22.x32.w
+ x24.w
+ x12.x22.w
+ x13.x2.w
+ y3.x25
+ y32.x22.u1
+ y2.x32.t2
+ y2.x2.x3.t2
+ y2.x2.x34
+ y2.x22.t2
+ y2.x23.x32
+ y2.x24.x3
+ y2.x25
+ y2.x1.x24
+ y2.x12.t1
+ y2.x14.x2
+ y2.x15
+ y2.y32.x24
+ y2.y33.x2.u1
+ y22.x3.s
+ y22.x2.x32.w
+ y22.x22.u1
+ y22.x1.s
+ y22.x1.x22.w
+ y22.x13.w
+ y23.x3.t2
+ y23.x23.x3
+ y23.x1.t1
+ y23.x1.x23
+ y23.x12.x22
+ y23.x13.x2
+ y24.x2.u1
+ y24.x1.x2.w
+ y24.x12.w
+ y25.x13
+ y26.u1
+ y26.x3.w
+ y26.x2.w
+ y27.x2.x3
+ y27.x22
+ y27.x1.x2
+ y27.x12
+ y29.x1
+ y1.x32.t2
+ y1.y22.x1.t1
+ y1.y22.x14
+ y1.y26.x12
+ y1.y28.x2
+ y1.y28.x1
+ y1.x3.r
- u2.t1 =
x1.x2.s
+ x12.s
+ x12.x22.w
+ x13.x2.w
+ y33.x24
+ y2.x22.t1
+ y2.x22.x33
+ y2.x23.x32
+ y2.x1.x2.t1
+ y2.x13.x22
+ y2.x14.x2
+ y2.y3.x22.u1
+ y2.y32.x24
+ y22.x2.x32.w
+ y22.x23.w
+ y22.x1.x22.w
+ y22.x12.x2.w
+ y23.x22.x32
+ y23.x23.x3
+ y23.x24
+ y23.x12.x22
+ y24.x2.u1
+ y24.x2.x3.w
+ y24.x22.w
+ y24.x12.w
+ y25.x23
+ y25.x1.x22
+ y25.x12.x2
+ y25.x13
+ y27.x12
+ y1.y24.x13
+ y1.y26.x12
+ y1.y28.x1
+ y1.x1.r
- u1.t2 =
x23.u1
+ x1.x2.s
+ x1.x23.w
+ x12.x22.w
+ x13.x2.w
+ y32.x22.u1
+ y33.x24
+ y34.x2.u1
+ y36.u1
+ y37.x22
+ y2.x1.x2.t1
+ y2.x1.x24
+ y2.x14.x2
+ y2.y32.x24
+ y2.y36.x22
+ y22.x22.u1
+ y22.x12.x2.w
+ y23.x1.t1
+ y23.x13.x2
+ y23.x14
+ y24.x2.u1
+ y24.x1.x2.w
+ y25.x1.x22
+ y25.x13
+ y26.x1.w
+ y27.x1.x2
+ y27.x12
+ y1.x15
+ y1.y22.x14
+ y1.y24.x13
+ y33.r
+ y1.x1.r
- u1.t1 =
x1.x2.s
+ x12.x22.w
+ y32.x22.u1
+ y2.x1.x2.t1
+ y2.x12.x23
+ y2.x13.x22
+ y2.y32.x24
+ y2.y35.u1
+ y2.y36.x22
+ y22.x22.u1
+ y23.x1.t1
+ y23.x1.x23
+ y24.x1.x2.w
+ y25.x1.x22
+ y25.x12.x2
+ y27.x1.x2
+ y1.x12.t1
+ y1.y22.x1.t1
+ y1.y22.x14
+ y1.y24.x13
+ y1.y28.x1
+ y2.y32.r
+ y1.x1.r
- t22 =
x33.t2
+ x2.x32.t2
+ x2.x35
+ x22.x34
+ x23.x33
+ x24.x32
+ x26
+ x12.x2.t1
+ x12.x24
+ x13.t1
+ x13.x23
+ y33.x22.u1
+ y34.x24
+ y35.x2.u1
+ y37.u1
+ y38.x22
+ y2.x32.s
+ y2.x34.w
+ y2.x2.x33.w
+ y2.x13.x2.w
+ y2.y33.x24
+ y2.y37.x22
+ y22.x2.x3.t2
+ y22.x22.x33
+ y22.x23.x32
+ y22.x12.t1
+ y22.x13.x22
+ y22.x14.x2
+ y23.x33.w
+ y23.x2.x32.w
+ y23.x22.x3.w
+ y23.x12.x2.w
+ y24.x3.t2
+ y24.x2.x33
+ y24.x24
+ y24.x1.t1
+ y24.x13.x2
+ y26.x22.x3
+ y26.x12.x2
+ y26.x13
+ y27.x3.w
+ y28.x2.x3
+ y28.x22
+ y28.x1.x2
+ y1.y2.x32.t2
+ y1.y2.x12.t1
+ y1.y23.x1.t1
+ y1.y23.x14
+ y1.y25.t1
+ y1.y25.x13
+ y1.y29.x2
+ x32.r
+ y34.r
- t1.t2 =
x23.t1
+ x1.x22.t1
+ x13.t1
+ y33.x22.u1
+ y2.x32.s
+ y2.x34.w
+ y2.x22.x32.w
+ y2.x12.x22.w
+ y2.y33.x24
+ y2.y36.u1
+ y2.y37.x22
+ y22.x32.t2
+ y22.x2.x3.t2
+ y22.x2.x34
+ y22.x22.t2
+ y22.x22.t1
+ y22.x22.x33
+ y22.x24.x3
+ y22.x25
+ y22.x12.t1
+ y22.x13.x22
+ y22.x14.x2
+ y23.x3.s
+ y23.x22.x3.w
+ y24.x3.t2
+ y24.x2.t1
+ y24.x22.x32
+ y24.x23.x3
+ y24.x24
+ y24.x1.x23
+ y24.x12.x22
+ y24.x14
+ y25.x12.w
+ y26.x22.x3
+ y26.x23
+ y26.x12.x2
+ y27.x3.w
+ y27.x1.w
+ y28.x2.x3
+ y28.x1.x2
+ y1.y2.x15
+ y1.y23.x3.t2
+ y1.y25.t2
+ y1.y25.t1
+ y1.y25.x13
+ y1.y27.x12
+ x12.r
+ y2.y33.r
- t12 =
y34.x24
+ y2.x12.s
+ y2.x14.w
+ y22.x22.x33
+ y22.x1.x2.t1
+ y22.x1.x24
+ y22.x12.t1
+ y22.x13.x22
+ y22.x14.x2
+ y22.x15
+ y23.x1.x22.w
+ y23.x12.x2.w
+ y24.x22.x32
+ y24.x24
+ y24.x1.x23
+ y24.x14
+ y25.x1.x2.w
+ y26.x22.x3
+ y26.x1.x22
+ y210.x1
+ y1.y2.x12.t1
+ y1.y2.x15
+ y1.y23.x1.t1
+ y1.y25.t1
+ y1.y25.x13
+ y1.y27.x12
+ x12.r
- u2.s =
x22.x3.t2
+ x22.x34
+ x23.t2
+ x23.x33
+ x24.x32
+ x26
+ x12.x24
+ x13.x23
+ y2.x32.s
+ y2.x34.w
+ y2.x2.x3.s
+ y2.x2.x33.w
+ y2.x22.s
+ y2.x12.s
+ y2.x12.x22.w
+ y2.x14.w
+ y2.y3.x25
+ y2.y32.x22.u1
+ y2.y33.x24
+ y2.y35.x23
+ y22.x32.t2
+ y22.x2.x3.t2
+ y22.x2.x34
+ y22.x22.t2
+ y22.x22.t1
+ y22.x23.x32
+ y22.x24.x3
+ y22.x1.x2.t1
+ y22.x12.t1
+ y22.x12.x23
+ y22.x15
+ y23.x3.s
+ y23.x2.x32.w
+ y23.x23.w
+ y23.x1.s
+ y23.x1.x22.w
+ y23.x12.x2.w
+ y24.x3.t2
+ y24.x2.t1
+ y24.x1.x23
+ y24.x12.x22
+ y25.x2.u1
+ y25.x2.x3.w
+ y25.x22.w
+ y26.x22.x3
+ y26.x23
+ y27.u1
+ y27.x3.w
+ y27.x1.w
+ y28.x2.x3
+ y28.x1.x2
+ y210.x1
+ y1.y2.x32.t2
+ y1.y2.x12.t1
+ y1.y2.x15
+ y1.y23.x1.t1
+ y1.y23.x14
+ y1.y29.x2
+ y1.y29.x1
+ y1.y2.x3.r
+ y1.y2.x1.r
- u1.s =
x23.t1
+ x12.x24
+ y3.x23.u1
+ y33.x22.u1
+ y35.x2.u1
+ y36.x23
+ y2.x23.x3.w
+ y2.x1.x2.s
+ y2.x1.x23.w
+ y2.x12.x22.w
+ y2.y32.x22.u1
+ y2.y33.x24
+ y2.y34.x2.u1
+ y2.y35.x23
+ y22.x25
+ y22.x12.x23
+ y23.x22.u1
+ y23.x23.w
+ y23.x1.s
+ y24.x2.t1
+ y24.x24
+ y24.x12.x22
+ y25.x2.u1
+ y25.x2.x3.w
+ y26.x23
+ y26.x1.x22
+ y27.x2.w
+ y28.x22
+ y1.y23.x1.t1
+ y1.y23.x14
+ y1.y25.t1
+ y1.y29.x2
+ y32.x2.r
- t2.s =
x2.x32.s
+ x22.x3.s
+ x23.s
+ x23.x32.w
+ x24.x3.w
+ x1.x24.w
+ x12.x23.w
+ x13.s
+ x13.x22.w
+ y32.x23.u1
+ y33.x25
+ y34.x22.u1
+ y36.x2.u1
+ y37.x23
+ y2.x33.t2
+ y2.x2.x35
+ y2.x22.x3.t2
+ y2.x22.x34
+ y2.x23.x33
+ y2.x24.x32
+ y2.x1.x25
+ y2.x12.x2.t1
+ y2.x13.t1
+ y2.x14.x22
+ y2.x15.x2
+ y2.x16
+ y2.y3.x23.u1
+ y2.y32.x25
+ y2.y33.x22.u1
+ y2.y35.x2.u1
+ y2.y36.x23
+ y22.x32.s
+ y22.x34.w
+ y22.x2.x3.s
+ y22.x22.s
+ y22.x22.x32.w
+ y22.x23.x3.w
+ y22.x24.w
+ y22.x1.x23.w
+ y22.x12.s
+ y23.x22.t2
+ y23.x24.x3
+ y23.x13.x22
+ y23.x15
+ y24.x33.w
+ y24.x2.s
+ y24.x22.x3.w
+ y24.x23.w
+ y24.x1.x22.w
+ y24.x12.x2.w
+ y24.x13.w
+ y25.x3.t2
+ y25.x2.t2
+ y25.x2.x33
+ y25.x24
+ y25.x1.t1
+ y25.x14
+ y26.x2.u1
+ y26.x22.w
+ y27.x23
+ y27.x1.x22
+ y28.u1
+ y28.x3.w
+ y28.x2.w
+ y28.x1.w
+ y29.x2.x3
+ y211.x1
+ y1.y22.x12.t1
+ y1.y22.x15
+ y1.y24.x3.t2
+ y1.y24.x14
+ y1.y26.t2
+ y1.y28.x12
+ y1.y210.x2
+ x3.w.r
+ y33.x2.r
+ y2.x32.r
+ y2.x2.x3.r
+ y2.x12.r
+ y1.x12.r
+ y1.y22.x3.r
+ y1.y22.x1.r
- t1.s =
x12.x2.s
+ x13.x22.w
+ y32.x23.u1
+ y2.x22.x3.t2
+ y2.x22.x34
+ y2.x24.x32
+ y2.x25.x3
+ y2.x12.x2.t1
+ y2.y34.x24
+ y2.y35.x2.u1
+ y22.x32.s
+ y22.x34.w
+ y22.x2.x3.s
+ y22.x22.s
+ y22.x23.u1
+ y22.x12.x22.w
+ y23.x32.t2
+ y23.x2.x34
+ y23.x22.t2
+ y23.x22.t1
+ y23.x22.x33
+ y23.x23.x32
+ y23.x25
+ y23.x12.t1
+ y23.x12.x23
+ y23.x13.x22
+ y23.x14.x2
+ y23.x15
+ y24.x3.s
+ y24.x22.u1
+ y24.x13.w
+ y25.x3.t2
+ y25.x2.t1
+ y25.x22.x32
+ y25.x23.x3
+ y25.x1.t1
+ y25.x14
+ y26.x12.w
+ y27.t1
+ y27.x13
+ y28.x1.w
+ y29.x2.x3
+ y29.x22
+ y210.w
+ y211.x2
+ y211.x1
+ y1.y22.x15
+ y1.y24.x3.t2
+ y1.y26.t2
+ y1.y28.x12
+ y1.y210.x2
+ x1.w.r
+ y2.x1.x2.r
+ y2.y32.x2.r
+ y1.x12.r
- s2 =
x22.x32.t2
+ x22.x35
+ x23.x3.t2
+ x23.x34
+ x24.x33
+ x25.x32
+ x1.x23.t1
+ x1.x26
+ x12.x22.t1
+ x12.x25
+ x13.x24
+ y3.x24.u1
+ y32.x26
+ y33.x23.u1
+ y35.x22.u1
+ y36.x24
+ y2.x22.x3.s
+ y2.x22.x33.w
+ y2.x23.x32.w
+ y2.x12.x23.w
+ y2.y3.x26
+ y2.y35.x24
+ y22.x33.t2
+ y22.x2.x32.t2
+ y22.x2.x35
+ y22.x22.x34
+ y22.x23.t2
+ y22.x23.x33
+ y22.x24.x32
+ y22.x25.x3
+ y22.x1.x22.t1
+ y22.x12.x2.t1
+ y22.x13.t1
+ y22.x14.x22
+ y22.x16
+ y23.x32.s
+ y23.x34.w
+ y23.x2.x33.w
+ y23.x22.x32.w
+ y23.x23.x3.w
+ y23.x24.w
+ y23.x1.x23.w
+ y23.x12.s
+ y23.x13.x2.w
+ y23.x14.w
+ y24.x2.x3.t2
+ y24.x22.t2
+ y24.x22.t1
+ y24.x1.x2.t1
+ y24.x1.x24
+ y24.x12.x23
+ y24.x15
+ y25.x33.w
+ y25.x2.x32.w
+ y25.x1.s
+ y25.x13.w
+ y26.x3.t2
+ y26.x2.t1
+ y26.x2.x33
+ y26.x24
+ y26.x14
+ y27.x2.x3.w
+ y27.x1.x2.w
+ y28.x23
+ y28.x1.x22
+ y28.x12.x2
+ y29.x3.w
+ y29.x2.w
+ y210.x2.x3
+ y210.x1.x2
+ y212.x1
+ y1.y23.x32.t2
+ y1.y23.x15
+ y1.y25.x14
+ y1.y27.t1
+ y1.y27.x13
+ y1.y29.x12
+ x22.x3.r
+ y32.x22.r
+ y22.x32.r
+ y22.x12.r
+ y24.x1.r
+ y1.y23.x2.r
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.x2.x3 =
y1.y22.x1
- y1.x1.x2 =
y1.y22.x1
- y1.x2.t2 =
y1.y22.t1
+ y1.y22.x13
+ y1.y24.x12
- y1.x2.t1 =
y1.y22.t1
This cohomology ring was obtained from a calculation
out to degree 17. The cohomology ring approximation
is stable from degree 14 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
x32
+ x22
+ y34
+ y2.w
+ y22.x3
+ y24
in degree 4
- h3 =
x22.x3
+ y32.x22
+ y2.u2
+ y22.x32
+ y22.x1.x2
+ y23.w
+ y24.x3
+ y24.x1
in degree 6
- h4 =
y2
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 6, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y1
in degree 1
-
x3
in degree 2
-
x2
in degree 2
-
x1
in degree 2
-
y32
in degree 2
-
w
in degree 3
-
y3.x2
in degree 3
-
y33
in degree 3
-
y1.x3
in degree 3
-
y1.x1
in degree 3
-
x2.x3
in degree 4
-
x22
in degree 4
-
x1.x2
in degree 4
-
x12
in degree 4
-
y32.x2
in degree 4
-
y34
in degree 4
-
u2
in degree 5
-
u1
in degree 5
-
x3.w
in degree 5
-
x2.w
in degree 5
-
x1.w
in degree 5
-
y33.x2
in degree 5
-
y35
in degree 5
-
y1.x12
in degree 5
-
t2
in degree 6
-
t1
in degree 6
-
x23
in degree 6
-
x12.x2
in degree 6
-
x13
in degree 6
-
y3.u1
in degree 6
-
y34.x2
in degree 6
-
y36
in degree 6
-
s
in degree 7
-
x2.u1
in degree 7
-
x2.x3.w
in degree 7
-
x22.w
in degree 7
-
x1.x2.w
in degree 7
-
x12.w
in degree 7
-
y32.u1
in degree 7
-
y35.x2
in degree 7
-
y1.t2
in degree 7
-
y1.t1
in degree 7
-
x3.t2
in degree 8
-
x2.t2
in degree 8
-
x2.t1
in degree 8
-
x1.t1
in degree 8
-
x13.x2
in degree 8
-
y3.x2.u1
in degree 8
-
y33.u1
in degree 8
-
y36.x2
in degree 8
-
x3.s
in degree 9
-
x2.s
in degree 9
-
x23.w
in degree 9
-
x1.s
in degree 9
-
x12.x2.w
in degree 9
-
x13.w
in degree 9
-
y32.x2.u1
in degree 9
-
y34.u1
in degree 9
-
y1.x1.t1
in degree 9
-
x2.x3.t2
in degree 10
-
x22.t2
in degree 10
-
x1.x2.t1
in degree 10
-
x12.t1
in degree 10
-
y33.x2.u1
in degree 10
-
y35.u1
in degree 10
-
x2.x3.s
in degree 11
-
x22.s
in degree 11
-
x1.x2.s
in degree 11
-
x12.s
in degree 11
-
y34.x2.u1
in degree 11
-
y36.u1
in degree 11
-
x23.t2
in degree 12
-
x12.x2.t1
in degree 12
-
y35.x2.u1
in degree 12
-
x23.s
in degree 13
-
x12.x2.s
in degree 13
-
x13.s
in degree 13
-
x13.x2.s
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y32.h
in degree 3
-
y3.x2.h
+ y3.h3
in degree 4
-
y33.h
in degree 4
-
y32.x2.h
in degree 5
-
y34.h
in degree 5
-
y33.x2.h
in degree 6
-
y35.h
in degree 6
-
y1.x12.h
+ y1.x1.h3
+ y3.h5
in degree 6
-
y1.h5
in degree 6
-
y3.u1.h
in degree 7
-
y34.x2.h
in degree 7
-
y36.h
in degree 7
-
y32.u1.h
in degree 8
-
y35.x2.h
in degree 8
-
y1.x3.h5
in degree 8
-
y1.x1.h5
in degree 8
-
y3.h7
in degree 8
-
y3.x2.u1.h
+ y3.u1.h3
in degree 9
-
y33.u1.h
in degree 9
-
y36.x2.h
in degree 9
-
x13.w.h
+ x12.w.h3
+ x13.h4
+ u2.h5
+ x3.w.h5
+ x2.w.h5
+ x1.w.h5
+ x2.x3.h6
+ x1.x2.h6
+ x12.h6
+ w.h7
+ x2.h8
+ x1.h8
in degree 10
-
y32.x2.u1.h
in degree 10
-
y34.u1.h
in degree 10
-
y33.x2.u1.h
in degree 11
-
y35.u1.h
in degree 11
-
y34.x2.u1.h
in degree 12
-
y36.u1.h
in degree 12
-
y1.t2.h5
in degree 12
-
y1.t1.h5
in degree 12
-
y35.x2.u1.h
in degree 13
-
y1.x1.t1.h5
in degree 14
-
x2.u1.h7
+ x12.w.h7
+ x12.x2.h8
+ u2.h9
+ u1.h9
+ x3.w.h9
+ x2.w.h9
+ x1.w.h9
+ x2.x3.h10
+ w.h11
+ x2.h12
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.x12
+ y1.y22.x2
+ y1.y22.x1
in degree 5
-
y1.y2.x12
+ y1.y23.x2
+ y1.y23.x1
in degree 6
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- x3 restricts to
0
- w restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- t1 restricts to
0
- t2 restricts to
0
- s restricts to
0
- r restricts to
y8
Restriction to special subgroup number 2, which is 8gp5
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
0
- x2 restricts to
y32
+ y2.y3
- x3 restricts to
0
- w restricts to
0
- u1 restricts to
y2.y34
+ y23.y32
+ y12.y23
+ y14.y2
- u2 restricts to
y2.y34
+ y23.y32
- t1 restricts to
y22.y34
+ y24.y32
- t2 restricts to
y36
+ y2.y35
+ y23.y33
+ y24.y32
+ y12.y24
+ y14.y22
- s restricts to
y2.y36
+ y22.y35
+ y23.y34
+ y24.y33
+ y12.y23.y32
+ y12.y24.y3
+ y14.y2.y32
+ y14.y22.y3
- r restricts to
y38
+ y22.y36
+ y23.y35
+ y25.y33
+ y12.y22.y34
+ y12.y25.y3
+ y12.y26
+ y14.y34
+ y14.y23.y3
+ y18
Restriction to special subgroup number 3, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
y42
+ y3.y4
- x3 restricts to
y32
- w restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y2.y3.y4
- u1 restricts to
0
- u2 restricts to
y3.y44
+ y34.y4
+ y2.y44
+ y2.y32.y42
+ y22.y3.y42
+ y22.y32.y4
- t1 restricts to
y2.y33.y42
+ y2.y34.y4
+ y22.y44
+ y22.y33.y4
+ y23.y3.y42
+ y23.y32.y4
- t2 restricts to
y46
+ y3.y45
+ y33.y43
+ y35.y4
+ y2.y3.y44
+ y2.y32.y43
+ y2.y33.y42
+ y2.y34.y4
+ y22.y44
+ y22.y3.y43
+ y22.y32.y42
+ y23.y3.y42
+ y23.y32.y4
+ y24.y42
+ y1.y33.y42
+ y1.y34.y4
+ y12.y32.y42
+ y12.y33.y4
+ y12.y34
+ y14.y32
- s restricts to
y33.y44
+ y36.y4
+ y2.y46
+ y2.y35.y4
+ y22.y45
+ y22.y32.y43
+ y23.y3.y43
+ y24.y43
+ y24.y3.y42
+ y25.y42
+ y1.y32.y44
+ y1.y34.y42
+ y1.y2.y33.y42
+ y1.y2.y34.y4
+ y12.y3.y44
+ y12.y34.y4
+ y12.y2.y32.y42
+ y12.y2.y33.y4
+ y12.y2.y34
+ y14.y3.y42
+ y14.y32.y4
+ y14.y2.y32
- r restricts to
y48
+ y32.y46
+ y33.y45
+ y35.y43
+ y2.y3.y46
+ y2.y33.y44
+ y2.y34.y43
+ y2.y36.y4
+ y22.y46
+ y23.y3.y44
+ y23.y33.y42
+ y24.y44
+ y24.y3.y43
+ y24.y33.y4
+ y25.y3.y42
+ y25.y32.y4
+ y1.y33.y44
+ y1.y36.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y36
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y33.y4
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- x1 restricts to
y42
- x2 restricts to
y3.y4
+ y32
+ y2.y4
- x3 restricts to
y42
- w restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y2.y3.y4
+ y2.y32
- u1 restricts to
y32.y43
+ y34.y4
+ y2.y3.y43
+ y2.y32.y42
+ y22.y3.y42
+ y22.y32.y4
- u2 restricts to
y3.y44
+ y34.y4
+ y2.y44
+ y2.y3.y43
+ y2.y34
+ y22.y43
+ y22.y3.y42
+ y22.y32.y4
- t1 restricts to
y46
+ y32.y44
+ y34.y42
+ y2.y3.y44
+ y2.y32.y43
+ y2.y33.y42
+ y2.y34.y4
+ y22.y44
+ y22.y3.y43
+ y22.y32.y42
+ y22.y33.y4
+ y22.y34
+ y23.y3.y42
+ y23.y32.y4
+ y25.y4
+ y1.y3.y44
+ y1.y32.y43
+ y1.y2.y44
+ y1.y22.y43
+ y12.y44
+ y12.y3.y43
+ y12.y32.y42
+ y12.y2.y43
+ y12.y22.y42
+ y14.y42
- t2 restricts to
y33.y43
+ y34.y42
+ y35.y4
+ y36
+ y2.y3.y44
+ y2.y33.y42
+ y22.y44
+ y22.y33.y4
+ y22.y34
+ y23.y43
+ y24.y3.y4
+ y24.y32
+ y25.y4
+ y1.y3.y44
+ y1.y32.y43
+ y1.y2.y44
+ y1.y22.y43
+ y12.y44
+ y12.y3.y43
+ y12.y32.y42
+ y12.y2.y43
+ y12.y22.y42
+ y14.y42
- s restricts to
y3.y46
+ y33.y44
+ y35.y42
+ y36.y4
+ y2.y46
+ y2.y3.y45
+ y2.y32.y44
+ y2.y34.y42
+ y2.y36
+ y22.y45
+ y22.y3.y44
+ y22.y32.y43
+ y22.y34.y4
+ y22.y35
+ y24.y43
+ y24.y32.y4
+ y24.y33
+ y25.y42
+ y25.y3.y4
+ y25.y32
+ y1.y32.y44
+ y1.y34.y42
+ y1.y22.y44
+ y1.y24.y42
+ y12.y3.y44
+ y12.y34.y4
+ y12.y2.y44
+ y12.y24.y4
+ y14.y3.y42
+ y14.y32.y4
+ y14.y2.y42
+ y14.y22.y4
- r restricts to
y48
+ y34.y44
+ y38
+ y2.y32.y45
+ y2.y33.y44
+ y2.y35.y42
+ y2.y36.y4
+ y22.y33.y43
+ y22.y34.y42
+ y22.y35.y4
+ y22.y36
+ y23.y45
+ y23.y32.y43
+ y23.y34.y4
+ y24.y44
+ y24.y3.y43
+ y24.y34
+ y25.y43
+ y27.y4
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y22.y3.y44
+ y1.y22.y34.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y12.y32.y44
+ y12.y34.y42
+ y12.y2.y3.y44
+ y12.y2.y34.y4
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y34
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y14.y44
+ y14.y32.y42
+ y14.y34
+ y14.y2.y3.y42
+ y14.y2.y32.y4
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y18
(1 + 2t + 4t2
+ 5t3 + 5t4 + 6t5
+ 6t6 + 6t7 + 5t8
+ 4t9 + 3t10 + 2t11
+ t12 - t14 - t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128