Small group number 860 of order 128
G is the group 128gp860
G has 3 minimal generators, rank 4 and exponent 4.
The centre has rank 1.
There are 3 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 14 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2
- x2 in degree 2
- w1 in degree 3
- w2 in degree 3
- w3 in degree 3
- v in degree 4
- u1 in degree 5
- u2 in degree 5
- t in degree 6
- s in degree 7
- r in degree 8, a regular element
There are 51 minimal relations:
- y1.y3 =
0
- y12 =
0
- y3.x2 =
y1.x1
- y3.x1 =
y1.x1
- y1.y22 =
0
- x1.x2 =
x12
+ y1.w1
- y3.w3 =
y3.w1
+ y1.w2
+ y1.y2.x1
- y22.x2 =
y1.w1
+ y1.y2.x1
- y22.x1 =
y1.w2
- y1.w3 =
0
- x2.w3 =
0
- x2.w2 =
x1.w1
+ y2.x12
- x1.w3 =
0
- x1.w2 =
x1.w1
+ y2.x12
+ y1.y2.w2
- y22.w3 =
y22.w1
+ y1.y2.w2
- y1.v =
y1.y2.w1
- w32 =
y32.v
+ y33.w2
+ y33.w1
+ y2.y32.w1
+ y22.y3.w1
+ y22.y34
+ y24.y32
+ y25.y3
+ y26
- w2.w3 =
w1.w2
+ x1.v
+ y1.x1.w1
+ y1.y2.x12
- w22 =
x1.v
+ y3.u1
+ y32.v
+ y33.w2
+ y33.w1
+ y2.x1.w1
+ y22.v
+ y22.y3.w2
+ y24.y32
+ y1.x1.w1
- w1.w3 =
y32.v
+ y33.w2
+ y33.w1
+ y2.y32.w1
+ y22.y3.w1
+ y22.y34
+ y24.y32
+ y25.y3
+ y26
- w12 =
x2.v
+ y32.v
+ y33.w2
+ y33.w1
+ y2.x2.w1
+ y2.y32.w1
+ y22.y3.w1
+ y22.y34
+ y24.y32
+ y25.y3
+ y26
+ y1.x2.w1
+ y1.y2.x12
- y3.u2 =
y3.u1
+ y33.w2
+ y2.y3.v
+ y2.y32.w2
+ y2.y32.w1
+ y22.y3.w1
+ y25.y3
+ y1.x1.w1
- y1.u2 =
0
- y1.u1 =
y1.x1.w1
- w3.v =
y3.t
+ y3.w1.w2
+ y32.u1
+ y33.v
+ y2.y3.u1
+ y2.y33.w2
+ y22.u1
+ y22.y3.v
+ y23.v
+ y23.y3.w2
+ y24.w2
+ y24.w1
+ y27
+ y1.x13
- x2.u2 =
x1.u2
- x1.u1 =
x12.w1
+ y2.x1.v
+ y1.x13
+ y1.y2.x1.w1
- y22.u2 =
y22.u1
+ y22.y32.w2
+ y23.v
+ y23.y3.w2
+ y23.y3.w1
+ y24.w1
+ y27
+ y1.y2.x1.w1
- y1.t =
y1.x13
+ y1.y2.x2.w1
- w3.u2 =
y3.s
+ y32.w1.w2
+ y33.u1
+ y2.y3.w1.w2
+ y2.y34.w1
+ y22.w1.w2
+ y22.y33.w1
+ y22.y36
+ y23.y32.w2
+ y23.y35
+ y24.v
+ y24.y34
+ y26.y32
+ y1.x12.w1
+ y1.y2.x13
- w3.u1 =
y3.s
+ y33.u1
+ y2.y3.t
+ y2.y3.w1.w2
+ y2.y32.u1
+ y2.y34.w2
+ y22.w1.w2
+ y22.y3.u1
+ y22.y32.v
+ y22.y33.w1
+ y22.y36
+ y23.u1
+ y23.y3.v
+ y23.y32.w2
+ y24.y3.w2
+ y24.y3.w1
+ y25.w2
+ y25.y33
+ y26.y32
+ y1.x12.w1
- w2.u2 =
w2.u1
+ x1.t
+ x14
+ y33.u1
+ y34.v
+ y35.w2
+ y35.w1
+ y2.w2.v
+ y2.x1.u2
+ y2.y3.w1.w2
+ y2.y32.u1
+ y2.y33.v
+ y2.y34.w2
+ y2.y34.w1
+ y22.w1.w2
+ y22.y32.v
+ y22.y33.w2
+ y23.y3.v
+ y23.y32.w2
+ y24.y34
+ y25.w2
+ y25.y33
+ y1.x12.w1
+ y1.y2.x13
- w1.u2 =
x1.t
+ x12.v
+ x14
+ y3.s
+ y32.w1.w2
+ y33.u1
+ y2.y3.w1.w2
+ y2.y34.w1
+ y22.w1.w2
+ y22.y33.w1
+ y22.y36
+ y23.y32.w2
+ y23.y35
+ y24.v
+ y24.y34
+ y26.y32
- w1.u1 =
x2.t
+ x22.v
+ x1.t
+ y3.s
+ y33.u1
+ y2.w1.v
+ y2.x12.w1
+ y2.y33.v
+ y2.y34.w2
+ y22.w1.w2
+ y22.y32.v
+ y22.y33.w2
+ y22.y33.w1
+ y22.y36
+ y23.y32.w2
+ y24.v
+ y24.y3.w1
+ y25.w1
+ y25.y33
+ y26.y32
+ y28
+ y1.x22.w1
+ y1.x12.w1
- y1.s =
y1.x22.w1
+ y1.y2.x13
- v.u2 =
v.u1
+ w1.t
+ x2.w1.v
+ x1.w1.v
+ x13.w1
+ y3.v2
+ y32.s
+ y32.w2.v
+ y33.w1.w2
+ y35.v
+ y36.w2
+ y36.w1
+ y2.v2
+ y2.x2.t
+ y2.x22.v
+ y2.x14
+ y2.y3.s
+ y2.y3.w2.v
+ y2.y32.t
+ y2.y32.w1.w2
+ y2.y35.w2
+ y22.s
+ y22.y34.w2
+ y22.y34.w1
+ y22.y37
+ y23.y3.u1
+ y23.y32.v
+ y23.y33.w2
+ y23.y33.w1
+ y23.y36
+ y24.y3.v
+ y24.y32.w2
+ y24.y32.w1
+ y25.v
+ y25.y3.w2
+ y25.y34
+ y26.w2
+ y26.w1
+ y26.y33
+ y1.y2.x22.w1
- w3.t =
y3.v2
+ y32.s
+ y33.w1.w2
+ y35.v
+ y36.w2
+ y36.w1
+ y2.y3.s
+ y2.y33.u1
+ y2.y34.v
+ y2.y35.w2
+ y22.s
+ y22.y3.t
+ y22.y3.w1.w2
+ y22.y33.v
+ y22.y34.w1
+ y22.y37
+ y23.y3.u1
+ y23.y33.w1
+ y23.y36
+ y24.u1
+ y24.y3.v
+ y24.y32.w1
+ y25.v
+ y25.y3.w2
+ y25.y3.w1
+ y25.y34
+ y26.y33
+ y28.y3
+ y29
+ y1.y2.x12.w1
- x2.s =
x2.w1.v
+ x22.u1
+ x23.w1
+ x1.w1.v
+ x13.w1
+ y2.x22.v
+ y2.x14
+ y1.y2.x12.w1
- x1.s =
x13.w1
+ y2.x14
+ y1.x14
+ y1.y2.x12.w1
- u22 =
x1.v2
+ y3.v.u1
+ y33.w2.v
+ y34.w1.w2
+ y35.u1
+ y36.v
+ y37.w2
+ y2.y32.w2.v
+ y2.y34.u1
+ y2.y35.v
+ y2.y36.w2
+ y2.y39
+ y22.v2
+ y22.y3.w2.v
+ y22.y32.w1.w2
+ y22.y34.v
+ y22.y35.w2
+ y22.y35.w1
+ y23.y33.v
+ y23.y37
+ y24.y32.v
+ y25.y32.w2
+ y25.y32.w1
+ y25.y35
+ y26.v
+ y26.y3.w1
+ y26.y34
+ y29.y3
+ y32.r
- u1.u2 =
x12.t
+ x13.v
+ x15
+ y3.v.u1
+ y32.w2.u1
+ y33.w2.v
+ y34.w1.w2
+ y37.w1
+ y2.v.u1
+ y2.w1.t
+ y2.x2.w1.v
+ y2.x1.w1.v
+ y2.x13.w1
+ y2.y3.v2
+ y2.y3.w2.u1
+ y2.y32.w2.v
+ y2.y33.w1.w2
+ y2.y36.w1
+ y2.y39
+ y22.y3.w2.v
+ y22.y32.t
+ y22.y34.v
+ y22.y35.w1
+ y23.s
+ y23.y3.w1.w2
+ y23.y33.v
+ y23.y34.w2
+ y23.y34.w1
+ y23.y37
+ y24.w1.w2
+ y24.y3.u1
+ y24.y32.v
+ y24.y33.w2
+ y25.u1
+ y25.y32.w2
+ y25.y35
+ y26.y3.w2
+ y27.w2
+ y28.y32
+ y29.y3
+ y210
+ y1.x13.w1
+ y1.y2.x14
+ y32.r
- u12 =
x2.v2
+ x1.v2
+ x13.v
+ y3.v.u1
+ y33.w2.v
+ y34.w1.w2
+ y37.w1
+ y2.x13.w1
+ y2.y32.w2.v
+ y2.y34.u1
+ y2.y35.v
+ y2.y36.w2
+ y2.y39
+ y22.y3.w2.v
+ y22.y32.w1.w2
+ y22.y33.u1
+ y22.y35.w1
+ y23.y33.v
+ y23.y34.w1
+ y23.y37
+ y24.y32.v
+ y25.y32.w2
+ y25.y35
+ y26.v
+ y27.y33
+ y1.x13.w1
+ y1.y2.x14
+ y32.r
- w3.s =
y3.v.u1
+ y32.w2.u1
+ y2.y3.v2
+ y2.y32.s
+ y2.y32.w2.v
+ y2.y33.w1.w2
+ y2.y34.u1
+ y22.y3.s
+ y22.y3.w2.v
+ y22.y32.t
+ y22.y32.w1.w2
+ y22.y35.w2
+ y22.y35.w1
+ y23.y3.w1.w2
+ y23.y32.u1
+ y23.y33.v
+ y23.y34.w2
+ y23.y37
+ y24.t
+ y24.w1.w2
+ y24.y3.u1
+ y24.y32.v
+ y24.y33.w2
+ y24.y33.w1
+ y26.v
+ y28.y32
+ y210
- w1.s =
x2.v2
+ x22.t
+ x1.v2
+ x12.t
+ x13.v
+ y3.v.u1
+ y32.w2.u1
+ y2.x2.w1.v
+ y2.x23.w1
+ y2.x1.w1.v
+ y2.x13.w1
+ y2.y3.v2
+ y2.y32.s
+ y2.y32.w2.v
+ y2.y33.w1.w2
+ y2.y34.u1
+ y22.y3.s
+ y22.y3.w2.v
+ y22.y32.t
+ y22.y32.w1.w2
+ y22.y35.w2
+ y22.y35.w1
+ y23.y3.w1.w2
+ y23.y32.u1
+ y23.y33.v
+ y23.y34.w2
+ y23.y37
+ y24.t
+ y24.w1.w2
+ y24.y3.u1
+ y24.y32.v
+ y24.y33.w2
+ y24.y33.w1
+ y26.v
+ y28.y32
+ y210
+ y1.y2.x14
- u2.t =
v.s
+ w1.v2
+ x2.w1.t
+ x13.u2
+ x14.w1
+ y3.v.t
+ y3.w2.s
+ y33.v2
+ y34.s
+ y35.t
+ y35.w1.w2
+ y38.w2
+ y2.x22.t
+ y2.x23.v
+ y2.x13.v
+ y2.x15
+ y2.y3.v.u1
+ y2.y3.w2.t
+ y2.y32.v2
+ y2.y33.s
+ y2.y33.w2.v
+ y2.y34.t
+ y2.y34.w1.w2
+ y2.y35.u1
+ y2.y37.w1
+ y2.y310
+ y22.w2.t
+ y22.y3.v2
+ y22.y35.v
+ y22.y36.w2
+ y22.y39
+ y23.y3.w2.v
+ y23.y32.t
+ y23.y33.u1
+ y23.y34.v
+ y23.y35.w2
+ y23.y38
+ y24.w2.v
+ y24.y3.t
+ y24.y33.v
+ y25.y36
+ y26.u1
+ y26.y32.w2
+ y27.v
+ y27.y3.w2
+ y27.y3.w1
+ y28.w2
+ y28.w1
+ y28.y33
+ y211
+ y1.y2.x23.w1
+ y33.r
+ y2.y32.r
+ y22.y3.r
- u1.t =
v.s
+ x22.w1.v
+ x1.w1.t
+ y3.w2.s
+ y32.v.u1
+ y33.w2.u1
+ y34.w2.v
+ y35.w1.w2
+ y38.w1
+ y2.v.t
+ y2.x13.v
+ y2.y32.w2.u1
+ y2.y34.w1.w2
+ y2.y310
+ y22.v.u1
+ y22.w2.t
+ y22.y3.v2
+ y22.y3.w2.u1
+ y22.y32.w2.v
+ y22.y33.t
+ y22.y36.w2
+ y22.y36.w1
+ y22.y39
+ y23.v2
+ y23.y3.w2.v
+ y23.y32.w1.w2
+ y23.y33.u1
+ y23.y34.v
+ y23.y35.w2
+ y24.s
+ y24.y3.t
+ y24.y3.w1.w2
+ y24.y33.v
+ y24.y34.w2
+ y24.y37
+ y25.t
+ y25.y3.u1
+ y25.y32.v
+ y25.y36
+ y26.u1
+ y26.y32.w1
+ y26.y35
+ y28.y33
+ y211
+ y1.x15
+ y1.y2.x13.w1
+ y33.r
+ y2.y32.r
+ y22.y3.r
- t2 =
v3
+ x22.v2
+ x16
+ y3.w2.v2
+ y32.v.t
+ y33.v.u1
+ y33.w2.t
+ y34.v2
+ y36.t
+ y36.w1.w2
+ y39.w2
+ y2.w1.v2
+ y2.y32.v.u1
+ y2.y33.w2.u1
+ y2.y34.s
+ y2.y35.t
+ y2.y36.u1
+ y2.y311
+ y22.v.t
+ y22.y3.v.u1
+ y22.y3.w2.t
+ y22.y34.t
+ y22.y34.w1.w2
+ y22.y35.u1
+ y22.y36.v
+ y23.v.u1
+ y23.y3.v2
+ y23.y3.w2.u1
+ y23.y33.t
+ y23.y33.w1.w2
+ y23.y35.v
+ y23.y36.w2
+ y23.y36.w1
+ y24.v2
+ y24.w2.u1
+ y24.y32.t
+ y24.y35.w1
+ y24.y38
+ y25.w2.v
+ y25.y32.u1
+ y25.y33.v
+ y25.y34.w2
+ y25.y37
+ y26.t
+ y26.w1.w2
+ y26.y33.w2
+ y26.y36
+ y27.u1
+ y27.y3.v
+ y27.y32.w2
+ y28.y3.w1
+ y28.y34
+ y29.w2
+ y29.w1
+ y210.y32
+ y34.r
+ y22.y32.r
+ y24.r
- u2.s =
x13.t
+ x14.v
+ x16
+ y3.v.s
+ y32.w2.s
+ y33.w2.t
+ y34.w2.u1
+ y35.s
+ y35.w2.v
+ y36.t
+ y37.u1
+ y39.w2
+ y2.x13.u2
+ y2.y3.v.t
+ y2.y3.w2.s
+ y2.y33.w2.u1
+ y2.y34.s
+ y2.y37.v
+ y2.y311
+ y22.v.t
+ y22.w2.s
+ y22.y3.w2.t
+ y22.y32.w2.u1
+ y22.y34.w1.w2
+ y22.y37.w2
+ y22.y37.w1
+ y22.y310
+ y23.y3.v2
+ y23.y32.w2.v
+ y23.y33.w1.w2
+ y23.y34.u1
+ y23.y35.v
+ y24.v2
+ y24.w2.u1
+ y24.y3.s
+ y24.y3.w2.v
+ y24.y32.t
+ y24.y35.w2
+ y24.y35.w1
+ y24.y38
+ y25.w2.v
+ y25.y33.v
+ y25.y37
+ y26.w1.w2
+ y26.y3.u1
+ y26.y32.v
+ y26.y33.w2
+ y27.y35
+ y28.y3.w2
+ y28.y3.w1
+ y29.w2
+ y1.x14.w1
+ y1.y2.x15
+ y3.w1.r
+ y34.r
+ y1.w2.r
+ y1.y2.x1.r
- u1.s =
x2.v.t
+ x23.t
+ x24.v
+ x1.v.t
+ x13.t
+ y3.v.s
+ y33.w2.t
+ y34.w2.u1
+ y35.s
+ y35.w2.v
+ y36.t
+ y37.u1
+ y39.w2
+ y2.v.s
+ y2.y3.v.t
+ y2.y32.v.u1
+ y2.y34.s
+ y2.y37.v
+ y2.y311
+ y22.v.t
+ y22.w2.s
+ y22.y3.v.u1
+ y22.y3.w2.t
+ y22.y32.v2
+ y22.y33.s
+ y22.y33.w2.v
+ y22.y35.u1
+ y22.y37.w2
+ y22.y37.w1
+ y22.y310
+ y23.y32.w2.v
+ y23.y33.t
+ y23.y33.w1.w2
+ y23.y35.v
+ y23.y36.w2
+ y23.y36.w1
+ y24.v2
+ y24.w2.u1
+ y24.y33.u1
+ y24.y34.v
+ y24.y35.w2
+ y25.s
+ y25.w2.v
+ y25.y3.t
+ y25.y33.v
+ y25.y34.w1
+ y26.t
+ y26.y33.w1
+ y27.y3.v
+ y27.y35
+ y28.v
+ y28.y3.w2
+ y28.y3.w1
+ y29.w2
+ y29.y33
+ y210.y32
+ y211.y3
+ y212
+ y1.x24.w1
+ y1.x14.w1
+ y3.w1.r
+ y34.r
+ y1.w2.r
+ y1.y2.x1.r
- t.s =
v2.u1
+ x23.w1.v
+ x1.w1.v2
+ x12.w1.t
+ x13.w1.v
+ y34.w2.t
+ y37.t
+ y37.w1.w2
+ y310.w2
+ y310.w1
+ y2.v3
+ y2.x2.v.t
+ y2.x22.v2
+ y2.x23.t
+ y2.x24.v
+ y2.x1.v.t
+ y2.x12.v2
+ y2.x14.v
+ y2.y3.v.s
+ y2.y32.v.t
+ y2.y33.v.u1
+ y2.y34.v2
+ y2.y34.w2.u1
+ y2.y36.t
+ y2.y38.v
+ y2.y39.w2
+ y22.w2.v2
+ y22.y3.v.t
+ y22.y34.s
+ y22.y35.t
+ y22.y35.w1.w2
+ y22.y36.u1
+ y22.y38.w2
+ y22.y38.w1
+ y22.y311
+ y23.y3.v.u1
+ y23.y32.v2
+ y23.y33.w2.v
+ y23.y34.t
+ y23.y34.w1.w2
+ y23.y35.u1
+ y23.y37.w1
+ y23.y310
+ y24.v.u1
+ y24.w2.t
+ y24.y32.s
+ y24.y33.w1.w2
+ y24.y34.u1
+ y24.y39
+ y25.w2.u1
+ y25.y3.w2.v
+ y25.y32.w1.w2
+ y25.y34.v
+ y25.y35.w2
+ y26.w2.v
+ y26.y3.t
+ y26.y34.w2
+ y26.y34.w1
+ y26.y37
+ y27.y3.u1
+ y27.y32.v
+ y27.y33.w2
+ y27.y36
+ y28.y3.v
+ y28.y32.w1
+ y28.y35
+ y29.y3.w2
+ y29.y3.w1
+ y29.y34
+ y210.w2
+ y210.w1
+ y212.y3
+ y1.x16
+ y1.y2.x24.w1
+ y32.w1.r
+ y2.y3.w1.r
+ y2.y34.r
+ y22.w1.r
+ y22.y33.r
- s2 =
x2.v3
+ x23.v2
+ x25.v
+ x1.v3
+ x13.v2
+ y3.v2.u1
+ y32.w2.v.u1
+ y33.v.s
+ y33.w2.v2
+ y35.v.u1
+ y36.v2
+ y37.s
+ y37.w2.v
+ y38.t
+ y38.w1.w2
+ y39.u1
+ y311.w2
+ y2.x2.w1.v2
+ y2.x25.w1
+ y2.x1.w1.v2
+ y2.y32.v.s
+ y2.y32.w2.v2
+ y2.y33.v.t
+ y2.y34.w2.t
+ y2.y36.w2.v
+ y2.y39.v
+ y2.y310.w1
+ y2.y313
+ y22.v3
+ y22.y3.v.s
+ y22.y33.v.u1
+ y22.y33.w2.t
+ y22.y34.v2
+ y22.y34.w2.u1
+ y22.y36.t
+ y22.y36.w1.w2
+ y22.y37.u1
+ y22.y38.v
+ y22.y39.w2
+ y22.y312
+ y23.y32.v.u1
+ y23.y32.w2.t
+ y23.y33.v2
+ y23.y33.w2.u1
+ y23.y34.s
+ y23.y34.w2.v
+ y23.y36.u1
+ y23.y38.w2
+ y24.v.t
+ y24.y3.v.u1
+ y24.y3.w2.t
+ y24.y32.v2
+ y24.y33.s
+ y24.y33.w2.v
+ y24.y34.w1.w2
+ y24.y37.w2
+ y24.y37.w1
+ y25.y3.v2
+ y25.y32.s
+ y25.y36.w2
+ y25.y36.w1
+ y26.v2
+ y26.w2.u1
+ y26.y3.s
+ y26.y32.w1.w2
+ y26.y34.v
+ y26.y35.w2
+ y27.y3.w1.w2
+ y27.y37
+ y28.t
+ y28.w1.w2
+ y29.y3.v
+ y29.y32.w2
+ y29.y32.w1
+ y210.v
+ y210.y3.w2
+ y212.y32
+ y1.x25.w1
+ y1.x15.w1
+ y32.v.r
+ y33.w2.r
+ y33.w1.r
+ y36.r
+ y2.y32.w1.r
+ y22.y3.w1.r
+ y22.y34.r
+ y24.y32.r
+ y25.y3.r
+ y26.r
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.w1.w2 =
y1.y2.x1.w1
- y3.w1.v =
y32.t
+ y32.w1.w2
+ y33.u1
+ y34.v
+ y2.y32.u1
+ y2.y34.w2
+ y22.y3.u1
+ y22.y32.v
+ y23.y3.v
+ y23.y32.w2
+ y24.y3.w2
+ y24.y3.w1
+ y27.y3
- y22.w1.v =
y22.y3.t
+ y22.y3.w1.w2
+ y22.y32.u1
+ y22.y33.v
+ y23.y3.u1
+ y23.y33.w2
+ y24.u1
+ y24.y3.v
+ y25.v
+ y25.y3.w2
+ y26.w2
+ y26.w1
+ y29
- w1.w2.v =
x1.v2
+ y3.w2.t
+ y32.w2.u1
+ y33.s
+ y33.w2.v
+ y34.t
+ y37.w2
+ y37.w1
+ y2.y3.w2.u1
+ y2.y33.t
+ y2.y33.w1.w2
+ y2.y34.u1
+ y2.y35.v
+ y2.y36.w2
+ y22.w2.u1
+ y22.y3.w2.v
+ y22.y32.t
+ y22.y32.w1.w2
+ y22.y33.u1
+ y22.y34.v
+ y23.w2.v
+ y23.y32.u1
+ y23.y34.w2
+ y23.y34.w1
+ y24.w1.w2
+ y24.y33.w2
+ y24.y36
+ y25.y32.w2
+ y25.y35
+ y26.v
+ y26.y3.w1
+ y27.w2
+ y28.y32
+ y29.y3
+ y1.x13.w1
+ y1.y2.x14
- y3.w1.t =
y32.v2
+ y33.s
+ y34.w1.w2
+ y36.v
+ y37.w2
+ y37.w1
+ y2.y32.s
+ y2.y34.u1
+ y2.y35.v
+ y2.y36.w2
+ y22.y3.s
+ y22.y32.t
+ y22.y32.w1.w2
+ y22.y34.v
+ y22.y35.w1
+ y22.y38
+ y23.y32.u1
+ y23.y34.w1
+ y23.y37
+ y24.y3.u1
+ y24.y32.v
+ y24.y33.w1
+ y25.y3.v
+ y25.y32.w2
+ y25.y32.w1
+ y25.y35
+ y26.y34
+ y28.y32
+ y29.y3
+ y1.x13.w1
- x2.v.u1 =
x2.w1.t
+ x22.w1.v
+ x1.w1.t
+ y2.x2.v2
+ y2.x22.t
+ y2.x23.v
+ y2.x12.t
+ y2.x13.v
+ y1.y2.x23.w1
- y22.w1.t =
y22.y3.v2
+ y22.y32.s
+ y22.y33.w1.w2
+ y22.y35.v
+ y22.y36.w2
+ y22.y36.w1
+ y23.y3.s
+ y23.y33.u1
+ y23.y34.v
+ y23.y35.w2
+ y24.s
+ y24.y3.t
+ y24.y3.w1.w2
+ y24.y33.v
+ y24.y34.w1
+ y24.y37
+ y25.y3.u1
+ y25.y33.w1
+ y25.y36
+ y26.u1
+ y26.y3.v
+ y26.y32.w1
+ y27.v
+ y27.y3.w2
+ y27.y3.w1
+ y27.y34
+ y28.y33
+ y210.y3
+ y211
+ y1.y2.x13.w1
- w1.w2.t =
x1.v.t
+ y3.w2.v2
+ y32.w2.s
+ y35.s
+ y35.w2.v
+ y36.t
+ y36.w1.w2
+ y37.u1
+ y38.v
+ y2.y3.w2.s
+ y2.y33.w2.u1
+ y2.y34.w2.v
+ y2.y35.t
+ y2.y35.w1.w2
+ y2.y36.u1
+ y2.y37.v
+ y2.y38.w2
+ y22.w2.s
+ y22.y3.w2.t
+ y22.y33.s
+ y22.y33.w2.v
+ y22.y35.u1
+ y22.y37.w2
+ y22.y37.w1
+ y23.y3.w2.u1
+ y23.y33.t
+ y23.y35.v
+ y23.y36.w2
+ y23.y36.w1
+ y24.w2.u1
+ y24.y3.w2.v
+ y24.y32.t
+ y24.y35.w1
+ y25.w2.v
+ y25.y3.w1.w2
+ y25.y32.u1
+ y25.y34.w2
+ y25.y34.w1
+ y25.y37
+ y26.y3.u1
+ y26.y32.v
+ y26.y36
+ y27.y32.w2
+ y27.y35
+ y28.y3.w1
+ y29.w2
+ y29.y33
+ y211.y3
+ y1.x14.w1
+ y1.y2.x15
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 14 onwards, and
Benson's tests detect stability from degree 14
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
x2
+ y22
in degree 2
- h3 =
v
in degree 4
- h4 =
y32
in degree 2
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 5, 10, 12.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y2
in degree 1
-
y1
in degree 1
-
x1
in degree 2
-
y2.y3
in degree 2
-
y22
in degree 2
-
y1.y2
in degree 2
-
w3
in degree 3
-
w2
in degree 3
-
w1
in degree 3
-
y2.x1
in degree 3
-
y23
in degree 3
-
y1.x1
in degree 3
-
y3.w2
in degree 4
-
y3.w1
in degree 4
-
y2.w3
in degree 4
-
y2.w2
in degree 4
-
y2.w1
in degree 4
-
y1.w2
in degree 4
-
y1.w1
in degree 4
-
y1.y2.x1
in degree 4
-
u2
in degree 5
-
u1
in degree 5
-
y2.y3.w2
in degree 5
-
y2.y3.w1
in degree 5
-
y22.w2
in degree 5
-
y1.y2.w2
in degree 5
-
t
in degree 6
-
w1.w2
in degree 6
-
y3.u1
in degree 6
-
y2.u2
in degree 6
-
y2.u1
in degree 6
-
y23.w2
in degree 6
-
s
in degree 7
-
y3.w1.w2
in degree 7
-
y2.t
in degree 7
-
y2.w1.w2
in degree 7
-
y2.y3.u1
in degree 7
-
y22.u1
in degree 7
-
w2.u1
in degree 8
-
x1.t
in degree 8
-
y3.s
in degree 8
-
y2.s
in degree 8
-
y2.y3.w1.w2
in degree 8
-
y22.t
in degree 8
-
y23.u1
in degree 8
-
w2.t
in degree 9
-
y3.w2.u1
in degree 9
-
y2.w2.u1
in degree 9
-
y2.x1.t
in degree 9
-
y2.y3.s
in degree 9
-
y23.t
in degree 9
-
w2.s
in degree 10
-
y2.w2.t
in degree 10
-
y2.y3.w2.u1
in degree 10
-
y3.w2.s
in degree 11
-
y2.w2.s
in degree 11
-
y2.y3.w2.s
in degree 12
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y1
in degree 1
-
x1
in degree 2
-
y22
in degree 2
-
y1.y2
in degree 2
-
w3
+ w1
in degree 3
-
y2.x1
in degree 3
-
y23
in degree 3
-
y1.x1
in degree 3
-
y2.w3
+ y2.w1
in degree 4
-
y1.w2
in degree 4
-
y1.w1
in degree 4
-
y1.y2.x1
in degree 4
-
u2
+ u1
+ y2.y3.w2
+ y2.y3.w1
+ w2.h
in degree 5
-
y22.w2
in degree 5
-
y1.y2.w2
in degree 5
-
t
+ w1.w2
+ y3.u1
+ y2.u1
+ y2.w2.h
in degree 6
-
y2.u2
+ y2.u1
+ y22.y3.w2
+ y22.y3.w1
+ y2.w2.h
in degree 6
-
y23.w2
in degree 6
-
y2.t
+ y2.w1.w2
+ y2.y3.u1
+ y22.u1
+ y22.w2.h
in degree 7
-
y22.u1
in degree 7
-
x1.t
in degree 8
-
y22.t
in degree 8
-
y23.u1
in degree 8
-
w2.t
+ w1.w22
+ y3.w2.u1
+ y2.w2.u1
+ y2.w22.h
in degree 9
-
y2.x1.t
in degree 9
-
y23.t
in degree 9
-
y2.w2.t
+ y2.w1.w22
+ y2.y3.w2.u1
+ y22.w2.u1
+ y22.w22.h
in degree 10
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.y2
in degree 2
-
y1.x1
in degree 3
-
y1.w2
in degree 4
-
y1.w1
in degree 4
-
y1.y2.x1
in degree 4
-
y1.y2.w2
in degree 5
-
y1.h
in degree 5