Small group number 929 of order 128
G is the group 128gp929
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 4 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3, 3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 14 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2
- x2 in degree 2
- w in degree 3
- v1 in degree 4
- v2 in degree 4
- u1 in degree 5
- u2 in degree 5
- u3 in degree 5
- t in degree 6
- r1 in degree 8
- r2 in degree 8, a regular element
There are 53 minimal relations:
- y2.y3 =
0
- y1.y3 =
0
- y2.x2 =
y13
- y1.x1 =
y13
- y12.y2 =
y13
- x1.x2 =
0
- y3.w =
y12.x2
- y14 =
0
- y3.v2 =
0
- y3.v1 =
0
- y1.v2 =
0
- y12.w =
0
- w2 =
x2.v1
+ x1.v1
+ y2.u2
+ y2.x1.w
+ y22.v1
+ y1.u2
+ y1.y2.v1
+ y12.v1
- x2.v2 =
y1.x2.w
- y3.u3 =
y3.u1
+ y12.x22
- y3.u2 =
0
- y2.u3 =
y22.v2
+ y22.v1
+ y23.w
+ y1.y22.w
- y2.u1 =
y2.x1.w
+ y22.v1
+ y1.u2
+ y1.u1
- y1.u3 =
y1.x2.w
+ y1.y2.v1
+ y1.y22.w
- w.v2 =
x1.u2
+ y2.t
+ y2.x1.v2
+ y2.x1.v1
+ y22.u2
+ y23.v2
+ y1.x2.v1
+ y12.u1
- x2.u3 =
x2.u2
+ x2.u1
+ x22.w
+ y12.u1
- x1.u3 =
y3.t
+ y32.u1
+ y2.x1.v2
+ y2.x1.v1
+ y22.x1.w
- x1.u1 =
x12.w
+ y3.t
+ y32.u1
+ y2.x1.v1
+ y12.u1
- y1.t =
y1.x2.v1
+ y1.y2.u2
+ y12.u1
+ y13.v1
- y12.u2 =
0
- v22 =
x12.v1
+ y2.x12.w
- w.u3 =
x22.v1
+ y2.w.v1
+ y2.x1.u2
+ y22.t
+ y22.x1.v2
+ y23.x1.w
+ y24.v2
+ y24.v1
- x2.t =
x22.v1
+ y3.x2.u1
+ y1.x2.u1
+ y1.x22.w
+ y12.x23
- y13.u1 =
0
- v2.u3 =
y2.v1.v2
+ y2.x12.v1
+ y22.x1.u2
+ y22.x12.w
+ y23.t
+ y23.x1.v2
+ y23.x1.v1
+ y24.u2
+ y25.v2
+ y1.x22.v1
- v2.u2 =
x1.w.v1
+ y2.r1
+ y2.v12
+ y2.x12.v2
+ y25.v2
+ y26.w
+ y1.w.u2
+ y1.y2.w.v1
+ y1.y24.v1
+ y1.y25.w
- v2.u1 =
x12.u2
+ y2.v1.v2
+ y2.x1.t
+ y2.x12.v2
+ y2.x12.v1
+ y22.x1.u2
+ y23.x1.v2
+ y1.w.u1
+ y1.y2.w.v1
- v1.u3 =
x2.w.v1
+ y2.v1.v2
+ y2.v12
+ y22.w.v1
+ y1.w.u1
- y3.r1 =
y3.x24
+ y33.x23
+ y34.u1
+ y35.x22
- y1.r1 =
y1.v12
+ y1.x24
+ y1.y25.w
- u32 =
x23.v1
+ y32.x24
+ y33.x2.u1
+ y22.v12
+ y22.x12.v1
+ y23.x12.w
+ y24.x1.v1
+ y25.u2
+ y25.x1.w
+ y26.v1
+ y1.x22.u1
+ y1.y24.u2
+ y1.y25.v1
+ y32.r2
- u2.u3 =
x2.w.u1
+ y2.v1.u2
+ y2.x1.w.v1
+ y22.r1
+ y22.v12
+ y22.w.u2
+ y22.x12.v2
+ y26.v2
+ y27.w
+ y1.x2.w.v1
+ y1.x22.u1
+ y1.y22.w.v1
+ y1.y25.v1
+ y1.y26.w
- u22 =
x2.v12
+ x1.v12
+ y2.v1.u2
+ y22.r1
+ y22.w.u2
+ y22.x12.v2
+ y23.x1.u2
+ y23.x12.w
+ y24.x1.v2
+ y25.u2
+ y25.x1.w
+ y26.v1
+ y1.v1.u2
+ y1.y2.v12
+ y1.y2.w.u2
+ y1.y22.w.v1
+ y1.y24.u2
+ y12.v12
+ y12.x24
+ y22.r2
+ y12.r2
- u1.u3 =
x2.w.u1
+ y32.x24
+ y33.x2.u1
+ y2.x1.w.v1
+ y2.x12.u2
+ y22.v1.v2
+ y22.v12
+ y22.x1.t
+ y22.x12.v2
+ y23.w.v1
+ y23.x12.w
+ y24.x1.v2
+ y24.x1.v1
+ y1.v1.u2
+ y1.v1.u1
+ y1.x2.w.v1
+ y1.y2.w.u2
+ y32.r2
- u1.u2 =
x2.v12
+ x1.w.u2
+ y2.v1.u2
+ y1.v1.u1
+ y1.x2.w.v1
+ y1.y2.w.u2
+ y1.y24.u2
+ y1.y25.v1
+ y1.y26.w
+ y12.x24
+ y1.y2.r2
+ y12.r2
- u12 =
x2.v12
+ x13.v1
+ y32.x24
+ y33.x2.u1
+ y2.x12.u2
+ y2.x13.w
+ y22.v12
+ y22.x12.v1
+ y1.v1.u1
+ y1.y2.v12
+ y12.v12
+ y12.x24
+ y32.r2
+ y12.r2
- v2.t =
x1.r1
+ x1.v12
+ x1.w.u2
+ x13.v2
+ y34.t
+ y35.u1
+ y2.w.t
+ y2.x1.w.v1
+ y2.x12.u2
+ y22.v1.v2
+ y22.w.u2
+ y23.x1.u2
+ y23.x12.w
+ y24.t
+ y24.x1.v1
+ y25.u2
+ y25.x1.w
+ y26.v2
+ y1.x2.w.v1
- x2.r1 =
x2.v12
+ x25
+ y32.x24
+ y33.x2.u1
+ y34.x23
+ y1.x22.u1
+ y12.x24
- u3.t =
x22.w.v1
+ y33.x24
+ y34.x2.u1
+ y2.v1.t
+ y2.x1.r1
+ y2.x1.v12
+ y2.x1.w.u2
+ y2.x13.v2
+ y22.x1.w.v1
+ y22.x12.u2
+ y23.v1.v2
+ y23.w.u2
+ y24.x1.u2
+ y24.x12.w
+ y25.t
+ y25.x1.v1
+ y26.u2
+ y26.x1.w
+ y27.v2
+ y1.x23.v1
+ y1.y22.w.u2
+ y3.x1.r2
+ y33.r2
- u2.t =
w.r1
+ w.v12
+ x2.v1.u1
+ x24.w
+ x1.v1.u2
+ x13.u2
+ y2.x1.v12
+ y2.x1.w.u2
+ y2.x12.t
+ y2.x13.v2
+ y2.x13.v1
+ y22.v1.u2
+ y22.x1.w.v1
+ y22.x13.w
+ y23.v12
+ y23.w.u2
+ y24.x1.u2
+ y25.t
+ y25.x1.v2
+ y25.x1.v1
+ y26.u2
+ y26.x1.w
+ y28.w
+ y1.x2.v12
+ y1.x2.w.u1
+ y1.y22.v12
+ y1.y22.w.u2
+ y1.y23.w.v1
+ y13.v12
+ y2.x1.r2
+ y23.r2
+ y1.y22.r2
+ y13.r2
- u1.t =
x2.v1.u1
+ x1.w.t
+ y33.x24
+ y34.x2.u1
+ y2.v1.t
+ y1.x2.v12
+ y1.x2.w.u1
+ y1.y22.v12
+ y1.y22.w.u2
+ y1.y25.u2
+ y1.y26.v1
+ y1.y27.w
+ y3.x1.r2
+ y33.r2
+ y1.y22.r2
- t2 =
x22.v12
+ x12.r1
+ x14.v2
+ y34.x24
+ y34.x1.t
+ y35.x2.u1
+ y36.t
+ y37.u1
+ y2.x12.w.v1
+ y2.x14.w
+ y22.x1.v12
+ y22.x13.v2
+ y22.x13.v1
+ y23.v1.u2
+ y23.x12.u2
+ y23.x13.w
+ y24.r1
+ y24.w.u2
+ y24.x12.v2
+ y25.x1.u2
+ y26.x1.v2
+ y27.u2
+ y27.x1.w
+ y28.v1
+ y1.y22.v1.u2
+ y1.y23.v12
+ y1.y23.w.u2
+ y1.y24.w.v1
+ y1.y26.u2
+ x12.r2
+ y34.r2
+ y24.r2
- v2.r1 =
v12.v2
+ x1.v1.t
+ x12.v12
+ x14.v1
+ y2.x1.v1.u2
+ y2.x1.w.t
+ y2.x14.w
+ y22.x1.r1
+ y22.x1.v12
+ y22.x1.w.u2
+ y22.x13.v2
+ y23.x12.u2
+ y24.x1.t
+ y24.x12.v2
+ y25.x12.w
+ y26.t
+ y26.x1.v2
+ y26.x1.v1
+ y27.u2
+ y27.x1.w
+ y28.v2
+ y1.x24.w
- u3.r1 =
x2.w.v12
+ x24.u2
+ x24.u1
+ x25.w
+ y32.x23.u1
+ y34.x22.u1
+ y35.x24
+ y36.x2.u1
+ y2.v1.r1
+ y2.v12.v2
+ y2.x1.v1.t
+ y2.x12.v12
+ y2.x14.v1
+ y22.w.r1
+ y22.x1.v1.u2
+ y22.x1.w.t
+ y22.x14.w
+ y23.x1.r1
+ y23.x1.v12
+ y23.x1.w.u2
+ y23.x13.v2
+ y24.x12.u2
+ y25.x1.t
+ y25.x12.v2
+ y26.x12.w
+ y27.t
+ y27.x1.v2
+ y27.x1.v1
+ y28.u2
+ y28.x1.w
+ y29.v2
+ y1.w.v1.u1
+ y1.x22.w.u1
+ y1.y27.u2
+ y1.y28.v1
+ y35.r2
- u2.r1 =
v12.u2
+ w.v1.t
+ x2.w.v12
+ x24.u2
+ x1.w.v12
+ x13.w.v1
+ y2.w.v1.u2
+ y2.x1.v1.t
+ y2.x12.r1
+ y2.x12.v12
+ y2.x14.v2
+ y22.w.r1
+ y22.w.v12
+ y22.x1.v1.u2
+ y22.x1.w.t
+ y23.v1.t
+ y23.x13.v1
+ y24.v1.u2
+ y24.w.t
+ y24.x13.w
+ y25.r1
+ y25.v1.v2
+ y25.v12
+ y25.x12.v1
+ y26.x1.u2
+ y27.t
+ y27.x1.v2
+ y28.x1.w
+ y29.v1
+ y210.w
+ y1.w.v1.u1
+ y1.y24.v12
+ y1.y24.w.u2
+ y1.y25.w.v1
+ y1.y27.u2
+ y1.y29.w
+ y2.v2.r2
+ y1.y2.w.r2
- u1.r1 =
v12.u1
+ x24.u1
+ x1.w.r1
+ x1.w.v12
+ y32.x23.u1
+ y34.x22.u1
+ y35.x24
+ y36.x2.u1
+ y2.v1.r1
+ y2.v13
+ y1.x22.v12
+ y1.y24.w.u2
+ y1.y25.w.v1
+ y35.r2
- t.r1 =
v12.t
+ x25.v1
+ x1.v1.r1
+ x1.v13
+ x12.v1.t
+ x13.r1
+ x15.v2
+ y3.x24.u1
+ y33.x23.u1
+ y34.x12.t
+ y35.x22.u1
+ y36.x24
+ y36.x1.t
+ y37.x2.u1
+ y38.t
+ y39.u1
+ y2.w.v1.t
+ y2.x1.w.r1
+ y2.x12.w.t
+ y2.x13.w.v1
+ y2.x14.u2
+ y22.w.v1.u2
+ y22.x12.v12
+ y22.x14.v1
+ y23.w.r1
+ y23.w.v12
+ y23.x12.w.v1
+ y23.x13.u2
+ y23.x14.w
+ y24.v1.t
+ y24.x1.r1
+ y24.x1.v12
+ y24.x13.v2
+ y25.v1.u2
+ y25.w.t
+ y25.x1.w.v1
+ y25.x12.u2
+ y26.x1.t
+ y29.u2
+ y210.v1
+ y1.x22.v1.u1
+ y1.x24.u1
+ y1.x25.w
+ y1.y22.w.v12
+ y1.y25.v12
+ y1.y28.u2
+ y1.y29.v1
+ y12.x26
+ x1.v2.r2
+ y34.x1.r2
+ y36.r2
+ y22.v2.r2
+ y22.x12.r2
+ y1.y22.w.r2
- r12 =
v14
+ x28
+ x12.v1.r1
+ x12.v13
+ x14.w.u2
+ x16.v1
+ y34.x26
+ y39.x2.u1
+ y2.x12.w.r1
+ y2.x13.w.t
+ y2.x14.w.v1
+ y2.x15.u2
+ y2.x16.w
+ y22.x13.r1
+ y22.x13.w.u2
+ y22.x14.t
+ y23.x12.v1.u2
+ y23.x13.w.v1
+ y23.x15.w
+ y24.x12.r1
+ y24.x12.v12
+ y25.x12.w.v1
+ y26.x13.v1
+ y27.x12.u2
+ y29.x12.w
+ y210.x1.v1
+ y211.u2
+ y211.x1.w
+ y212.v1
+ y1.y210.u2
+ y1.y211.v1
+ x12.v1.r2
+ y38.r2
+ y2.x12.w.r2
+ y24.x12.r2
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y13.x2 =
0
- y1.x2.u2 =
y1.x2.u1
+ y13.u1
- y12.x2.v1 =
0
- y12.x2.u1 =
0
- x2.w.u2 =
x2.w.u1
+ y1.x22.u1
- x1.v1.v2 =
x1.w.u2
+ y2.w.t
+ y22.r1
+ y22.v1.v2
+ y22.v12
+ y22.w.u2
+ y22.x12.v2
+ y23.x1.u2
+ y24.t
+ y24.x1.v2
+ y24.x1.v1
+ y25.u2
+ y27.w
+ y1.y2.w.u2
+ y1.y22.w.v1
+ y1.y25.v1
+ y1.y26.w
- x2.v1.u2 =
x2.v1.u1
+ y1.x2.w.u1
+ y12.v1.u1
+ y13.v12
This cohomology ring was obtained from a calculation
out to degree 17. The cohomology ring approximation
is stable from degree 16 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r2
in degree 8
- h2 =
v1
+ x22
+ x12
+ y34
+ y24
in degree 4
- h3 =
x2.v1
+ x1.v1
+ y32.x22
+ y32.x12
+ y22.v1
+ y22.x12
in degree 6
- h4 =
y2
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 7, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
x1
in degree 2
-
y32
in degree 2
-
y12
in degree 2
-
w
in degree 3
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
y33
in degree 3
-
y1.x2
in degree 3
-
v2
in degree 4
-
x22
in degree 4
-
x12
in degree 4
-
y32.x2
in degree 4
-
y32.x1
in degree 4
-
y34
in degree 4
-
y1.w
in degree 4
-
y12.x2
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
x2.w
in degree 5
-
x1.w
in degree 5
-
y3.x12
in degree 5
-
y33.x2
in degree 5
-
y33.x1
in degree 5
-
y35
in degree 5
-
y1.x22
in degree 5
-
t
in degree 6
-
x1.v2
in degree 6
-
x13
in degree 6
-
y3.u1
in degree 6
-
y32.x12
in degree 6
-
y34.x2
in degree 6
-
y34.x1
in degree 6
-
y36
in degree 6
-
y1.u1
in degree 6
-
y1.x2.w
in degree 6
-
y12.x22
in degree 6
-
x2.u2
in degree 7
-
x2.u1
in degree 7
-
x22.w
in degree 7
-
x1.u2
in degree 7
-
x12.w
in degree 7
-
y3.t
in degree 7
-
y32.u1
in degree 7
-
y33.x12
in degree 7
-
y35.x2
in degree 7
-
y35.x1
in degree 7
-
r
in degree 8
-
w.u2
in degree 8
-
w.u1
in degree 8
-
x1.t
in degree 8
-
x12.v2
in degree 8
-
y3.x2.u1
in degree 8
-
y32.t
in degree 8
-
y33.u1
in degree 8
-
y34.x12
in degree 8
-
y36.x2
in degree 8
-
y36.x1
in degree 8
-
y1.x2.u1
in degree 8
-
y1.x22.w
in degree 8
-
w.t
in degree 9
-
x22.u1
in degree 9
-
x12.u2
in degree 9
-
x13.w
in degree 9
-
y3.x1.t
in degree 9
-
y32.x2.u1
in degree 9
-
y33.t
in degree 9
-
y34.u1
in degree 9
-
y35.x12
in degree 9
-
y1.w.u1
in degree 9
-
x2.w.u1
in degree 10
-
x1.r
in degree 10
-
x12.t
in degree 10
-
y32.x1.t
in degree 10
-
y33.x2.u1
in degree 10
-
y34.t
in degree 10
-
y35.u1
in degree 10
-
y36.x12
in degree 10
-
y1.x22.u1
in degree 10
-
w.r
in degree 11
-
x1.w.t
in degree 11
-
y33.x1.t
in degree 11
-
y34.x2.u1
in degree 11
-
y35.t
in degree 11
-
y1.x2.w.u1
in degree 11
-
x22.w.u1
in degree 12
-
x12.r
in degree 12
-
y34.x1.t
in degree 12
-
y35.x2.u1
in degree 12
-
y36.t
in degree 12
-
x1.w.r
in degree 13
-
x12.w.t
in degree 13
-
y35.x1.t
in degree 13
-
y1.x22.w.u1
in degree 13
-
y36.x1.t
in degree 14
-
x12.w.r
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y3
in degree 1
-
x2
+ y12
in degree 2
-
y32
in degree 2
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
y33
in degree 3
-
y1.x2
+ y13
in degree 3
-
y12.h
in degree 3
-
x22
+ y12.x2
in degree 4
-
y32.x2
in degree 4
-
y32.x1
in degree 4
-
y34
in degree 4
-
y12.x2
+ y14
in degree 4
-
u3
+ v2.h
+ x12.h
+ y1.w.h
+ w.h2
+ h5
in degree 5
-
x2.w
+ y12.w
in degree 5
-
y3.x12
in degree 5
-
y33.x2
in degree 5
-
y33.x1
in degree 5
-
y35
in degree 5
-
y1.x22
+ y13.x2
in degree 5
-
x13
+ x1.h4
+ h6
in degree 6
-
y3.u1
in degree 6
-
y32.x12
in degree 6
-
y34.x2
in degree 6
-
y34.x1
in degree 6
-
y36
in degree 6
-
y1.x2.w
+ y13.w
in degree 6
-
y12.x22
+ y14.x2
in degree 6
-
x2.u2
+ y12.u2
in degree 7
-
x2.u1
+ y12.u1
in degree 7
-
x22.w
+ y12.x2.w
in degree 7
-
y3.t
in degree 7
-
y32.u1
in degree 7
-
y33.x12
in degree 7
-
y35.x2
in degree 7
-
y35.x1
in degree 7
-
y1.u1.h
in degree 7
-
y1.h6
in degree 7
-
y3.x2.u1
in degree 8
-
y32.t
in degree 8
-
y33.u1
in degree 8
-
y34.x12
in degree 8
-
y36.x2
in degree 8
-
y36.x1
in degree 8
-
y1.x2.u1
+ y13.u1
in degree 8
-
y1.x22.w
+ y13.x2.w
in degree 8
-
x22.u1
+ y12.x2.u1
in degree 9
-
x13.w
+ x1.w.h4
+ w.h6
in degree 9
-
y3.x1.t
in degree 9
-
y32.x2.u1
in degree 9
-
y33.t
in degree 9
-
y34.u1
in degree 9
-
y35.x12
in degree 9
-
y1.w.u1
+ y1.w.h5
in degree 9
-
x2.w.u1
+ y12.w.u1
in degree 10
-
y32.x1.t
in degree 10
-
y33.x2.u1
in degree 10
-
y34.t
in degree 10
-
y35.u1
in degree 10
-
y36.x12
in degree 10
-
y1.x22.u1
+ y13.x2.u1
in degree 10
-
y1.w.h6
in degree 10
-
y33.x1.t
in degree 11
-
y34.x2.u1
in degree 11
-
y35.t
in degree 11
-
y1.x2.w.u1
+ y13.w.u1
in degree 11
-
u1.h6
+ x1.w.h6
+ x12.h7
+ h11
in degree 11
-
x22.w.u1
+ y12.x2.w.u1
in degree 12
-
y34.x1.t
in degree 12
-
y35.x2.u1
in degree 12
-
y36.t
in degree 12
-
x12.w.t
+ x12.r.h
+ x1.w.t.h2
+ x1.r.h3
+ x12.t.h3
+ w.u2.h5
+ w.u1.h5
+ x1.t.h5
+ x12.v2.h5
+ x1.u2.h6
+ x12.w.h6
+ x1.v2.h7
+ u2.h8
+ x1.w.h8
+ v2.h9
+ w.h10
+ h13
in degree 13
-
y35.x1.t
in degree 13
-
y1.x22.w.u1
+ y13.x2.w.u1
in degree 13
-
y36.x1.t
in degree 14
-
w.u1.h6
+ x1.w2.h6
+ x12.w.h7
+ w.h11
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y12
in degree 2
-
y13
in degree 3
-
y12.x2
in degree 4
-
y12.x22
in degree 6
-
y12.u1
in degree 7
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- u3 restricts to
0
- t restricts to
0
- r1 restricts to
0
- r2 restricts to
y8
Restriction to special subgroup number 2, which is 8gp5
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
0
- x2 restricts to
y32
+ y2.y3
- w restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u2 restricts to
0
- u3 restricts to
y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- t restricts to
y1.y23.y32
+ y1.y24.y3
+ y12.y22.y32
+ y12.y23.y3
+ y12.y24
+ y14.y22
- r1 restricts to
y38
+ y22.y36
+ y23.y35
+ y24.y34
+ y25.y33
+ y26.y32
+ y1.y25.y32
+ y1.y26.y3
+ y12.y24.y32
+ y12.y25.y3
+ y12.y26
+ y14.y24
- r2 restricts to
y38
+ y24.y34
+ y1.y23.y34
+ y1.y25.y32
+ y12.y24.y32
+ y12.y25.y3
+ y14.y34
+ y14.y23.y3
+ y14.y24
+ y18
Restriction to special subgroup number 3, which is 8gp5
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
y32
+ y2.y3
- x2 restricts to
0
- w restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u2 restricts to
0
- u3 restricts to
y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- t restricts to
y1.y2.y34
+ y1.y24.y3
+ y12.y34
+ y12.y22.y32
+ y12.y24
+ y14.y32
+ y14.y2.y3
+ y14.y22
- r1 restricts to
y1.y25.y32
+ y1.y26.y3
+ y12.y24.y32
+ y12.y25.y3
+ y12.y26
+ y14.y24
- r2 restricts to
y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 8gp5
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
y22
- w restricts to
y2.y32
+ y22.y3
- v1 restricts to
y34
+ y22.y32
- v2 restricts to
0
- u1 restricts to
y2.y34
+ y23.y32
- u2 restricts to
y2.y34
+ y23.y32
- u3 restricts to
y23.y32
+ y24.y3
- t restricts to
y22.y34
+ y24.y32
- r1 restricts to
y38
+ y24.y34
+ y28
- r2 restricts to
y38
+ y26.y32
+ y28
+ y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 5, which is 16gp14
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- x1 restricts to
y32
+ y2.y3
- x2 restricts to
0
- w restricts to
y3.y42
+ y32.y4
+ y2.y3.y4
+ y12.y2
- v1 restricts to
y44
+ y32.y42
+ y2.y3.y42
+ y2.y32.y4
+ y22.y42
+ y22.y3.y4
- v2 restricts to
y32.y42
+ y33.y4
+ y2.y3.y42
+ y22.y3.y4
+ y1.y2.y32
+ y1.y22.y3
- u1 restricts to
y33.y42
+ y34.y4
+ y2.y44
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y12.y2.y32
+ y12.y22.y3
- u2 restricts to
y3.y44
+ y33.y42
+ y2.y44
+ y2.y32.y42
+ y22.y32.y4
+ y23.y42
+ y23.y3.y4
+ y12.y2.y32
+ y12.y22.y3
+ y14.y2
- u3 restricts to
y2.y44
+ y2.y33.y4
+ y22.y3.y42
+ y23.y42
+ y23.y3.y4
+ y1.y22.y32
+ y1.y23.y3
+ y12.y23
- t restricts to
y34.y42
+ y35.y4
+ y2.y3.y44
+ y2.y33.y42
+ y2.y34.y4
+ y22.y44
+ y22.y32.y42
+ y23.y3.y42
+ y24.y42
+ y1.y33.y42
+ y1.y34.y4
+ y1.y2.y32.y42
+ y1.y2.y34
+ y1.y22.y32.y4
+ y1.y24.y3
+ y12.y32.y42
+ y12.y33.y4
+ y12.y34
+ y12.y2.y3.y42
+ y12.y22.y3.y4
+ y12.y23.y3
+ y13.y2.y32
+ y13.y22.y3
+ y14.y32
+ y14.y2.y3
+ y14.y22
- r1 restricts to
y48
+ y32.y46
+ y33.y45
+ y34.y44
+ y35.y43
+ y37.y4
+ y2.y3.y46
+ y2.y33.y44
+ y2.y35.y42
+ y22.y3.y45
+ y22.y32.y44
+ y23.y3.y44
+ y23.y33.y42
+ y24.y44
+ y24.y3.y43
+ y24.y32.y42
+ y25.y32.y4
+ y1.y33.y44
+ y1.y35.y42
+ y1.y2.y36
+ y1.y22.y3.y44
+ y1.y22.y33.y42
+ y1.y22.y34.y4
+ y1.y22.y35
+ y1.y23.y32.y42
+ y1.y23.y34
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y24.y33
+ y1.y25.y32
+ y1.y26.y3
+ y12.y32.y44
+ y12.y35.y4
+ y12.y2.y3.y44
+ y12.y22.y32.y42
+ y12.y22.y33.y4
+ y12.y23.y3.y42
+ y12.y26
+ y13.y2.y34
+ y13.y23.y32
+ y14.y32.y42
+ y14.y33.y4
+ y14.y2.y3.y42
+ y14.y22.y3.y4
+ y15.y2.y32
+ y15.y22.y3
- r2 restricts to
y48
+ y32.y46
+ y33.y45
+ y35.y43
+ y2.y32.y45
+ y2.y34.y43
+ y2.y35.y42
+ y2.y36.y4
+ y22.y33.y43
+ y23.y32.y43
+ y23.y33.y42
+ y24.y44
+ y24.y32.y42
+ y24.y33.y4
+ y1.y33.y44
+ y1.y35.y42
+ y1.y22.y3.y44
+ y1.y22.y33.y42
+ y1.y22.y34.y4
+ y1.y23.y32.y42
+ y1.y23.y34
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y26.y3
+ y12.y34.y42
+ y12.y35.y4
+ y12.y2.y3.y44
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y22.y33.y4
+ y12.y23.y32.y4
+ y12.y24.y42
+ y12.y24.y3.y4
+ y12.y26
+ y13.y2.y34
+ y13.y23.y32
+ y14.y44
+ y14.y33.y4
+ y14.y34
+ y14.y2.y3.y42
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y22.y32
+ y14.y24
+ y15.y2.y32
+ y15.y22.y3
+ y16.y22
+ y18
(1 + 2t + 3t2
+ 3t3 + 3t4 + 5t5
+ 4t6 + 2t7 + 2t8
+ 2t9 + t10 - t11
- t12 - t14 - t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128