Small group number 934 of order 128
G = Syl2(J2) is Sylow 2-subgroup of Hall-Janko Group J_2
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
2, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 12 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2, a nilpotent element
- x2 in degree 2, a nilpotent element
- w1 in degree 3
- w2 in degree 3
- v in degree 4
- u1 in degree 5
- u2 in degree 5
- r in degree 8, a regular element
- p in degree 10
There are 33 minimal relations:
- y2.y3 =
0
- y1.y3 =
0
- y2.x2 =
0
- y2.x1 =
y1.x2
- y1.x1 =
0
- y3.w2 =
x12
- y3.w1 =
x1.x2
+ x12
- x22 =
x1.x2
+ x12
- y3.v =
0
- x2.w2 =
x1.w1
- x2.w1 =
0
- x1.w2 =
0
- w22 =
y22.v
+ y1.u2
+ y1.u1
+ y1.y22.w2
+ y1.y22.w1
+ y12.y2.w1
+ y13.w2
+ x1.v
- w12 =
y2.u1
+ y22.v
+ y23.w1
+ y1.u2
+ y12.v
+ y12.y2.w1
+ y13.w1
+ x2.v
- y3.u2 =
y34.x1
+ y32.x1.x2
- y3.u1 =
y34.x2
+ y32.x1.x2
+ y32.x12
+ x12.x2
- y2.u2 =
y2.u1
+ y1.u2
+ y1.y22.w2
- x2.u2 =
y1.x2.v
+ y33.x1.x2
+ y3.x12.x2
- x2.u1 =
x1.u1
+ y1.x2.v
+ y33.x12
+ y3.x12.x2
- x1.u2 =
x1.u1
+ y1.x2.v
+ y33.x1.x2
+ y33.x12
- u22 =
y2.v.u1
+ y22.w2.u1
+ y23.w2.v
+ y24.w1.w2
+ y25.u1
+ y26.v
+ y27.w1
+ y1.v.u2
+ y1.y2.w1.u1
+ y1.y22.w1.v
+ y1.y25.v
+ y1.y26.w2
+ y1.y26.w1
+ y12.w1.u2
+ y12.y22.w1.w2
+ y12.y25.w2
+ y13.y24.w2
+ y14.y2.u1
+ y14.y22.v
+ y15.u2
+ y15.y22.w1
+ x2.v2
+ y36.x12
+ y22.r
- u1.u2 =
y2.v.u1
+ y22.w2.u1
+ y23.w2.v
+ y24.w1.w2
+ y25.u1
+ y26.v
+ y27.w1
+ y1.y2.w1.u1
+ y1.y22.w2.v
+ y1.y22.w1.v
+ y1.y23.w1.w2
+ y1.y24.u1
+ y1.y26.w2
+ y12.w2.u2
+ y12.y2.w2.v
+ y12.y2.w1.v
+ y12.y22.w1.w2
+ y12.y25.w1
+ y13.y24.w2
+ y13.y24.w1
+ y14.y22.v
+ y14.y23.w1
+ y15.u2
+ y15.y2.v
+ y15.y22.w1
+ y16.y2.w2
+ y16.y2.w1
+ x1.v2
+ y36.x1.x2
+ y22.r
+ y1.y2.r
- u12 =
y2.v.u1
+ y22.w2.u1
+ y23.w2.v
+ y24.w1.w2
+ y25.u1
+ y26.v
+ y27.w1
+ y1.v.u1
+ y1.y2.w1.u1
+ y1.y22.w1.v
+ y1.y25.v
+ y1.y26.w2
+ y1.y26.w1
+ y12.w2.u1
+ y12.w1.u1
+ y12.y23.u1
+ y12.y25.w2
+ y12.y25.w1
+ y13.w2.v
+ y13.w1.v
+ y13.y2.w1.w2
+ y13.y23.v
+ y13.y24.w2
+ y14.y22.v
+ y14.y23.w1
+ y15.u2
+ y15.u1
+ y15.y22.w2
+ y15.y22.w1
+ y16.v
+ y16.y2.w2
+ y17.w2
+ y17.w1
+ x2.v2
+ x1.v2
+ y36.x1.x2
+ y36.x12
+ y22.r
+ y12.r
- w1.w2.u2 =
y2.p
+ y2.w1.w2.v
+ y22.v.u1
+ y23.w2.u1
+ y23.w1.u1
+ y24.w2.v
+ y26.u1
+ y27.v
+ y28.w2
+ y28.w1
+ y1.y22.v2
+ y1.y23.w2.v
+ y1.y23.w1.v
+ y1.y27.w2
+ y1.y27.w1
+ y12.v.u2
+ y12.y2.v2
+ y12.y2.w2.u1
+ y13.w2.u2
+ y13.y2.w2.v
+ y13.y24.v
+ y13.y25.w2
+ y13.y25.w1
+ y14.y23.v
+ y14.y24.w1
+ y15.y2.u1
+ y16.y22.w2
+ y16.y22.w1
+ y17.y2.w2
+ y17.y2.w1
+ x1.v.u1
+ y23.r
+ y12.y2.r
+ y1.x2.r
- w1.w2.u1 =
y2.p
+ y2.w1.w2.v
+ y22.v.u1
+ y23.w2.u1
+ y23.w1.u1
+ y24.w2.v
+ y26.u1
+ y27.v
+ y28.w2
+ y28.w1
+ y1.p
+ y1.w1.w2.v
+ y1.y2.v.u1
+ y1.y22.v2
+ y1.y22.w2.u1
+ y1.y22.w1.u1
+ y1.y25.u1
+ y1.y26.v
+ y12.v.u1
+ y12.y2.w2.u1
+ y12.y22.w2.v
+ y12.y22.w1.v
+ y12.y23.w1.w2
+ y12.y24.u1
+ y12.y25.v
+ y12.y26.w2
+ y13.v2
+ y13.w1.u2
+ y13.y22.w1.w2
+ y13.y25.w2
+ y14.w2.v
+ y14.y2.w1.w2
+ y14.y24.w1
+ y15.y2.u1
+ y15.y23.w2
+ y16.u2
+ y16.u1
+ y16.y22.w1
+ y17.y2.w2
+ y18.w2
+ y18.w1
+ y23.r
+ y1.y22.r
+ y12.y2.r
+ y13.r
+ y1.x2.r
- y3.p =
y37.x12
+ y33.r
+ y3.x1.r
- x2.p =
y36.x12.x2
+ y32.x2.r
+ x1.x2.r
- x1.p =
y32.x1.r
+ x12.r
- w2.p =
y2.w2.v.u1
+ y2.w1.v.u1
+ y22.w1.v2
+ y23.p
+ y23.w1.w2.v
+ y25.v2
+ y25.w1.u1
+ y27.w1.w2
+ y28.u1
+ y210.w2
+ y210.w1
+ y1.w2.v.u2
+ y1.w2.v.u1
+ y1.w1.v.u2
+ y1.y2.w2.v2
+ y1.y22.w1.w2.v
+ y1.y23.v.u1
+ y1.y24.v2
+ y1.y25.w2.v
+ y1.y27.u1
+ y1.y29.w1
+ y12.w2.v2
+ y12.y23.v2
+ y12.y23.w1.u1
+ y12.y24.w1.v
+ y12.y25.w1.w2
+ y12.y26.u1
+ y12.y27.v
+ y12.y28.w2
+ y12.y28.w1
+ y13.y22.v2
+ y13.y22.w2.u1
+ y13.y22.w1.u1
+ y13.y23.w2.v
+ y13.y26.v
+ y13.y27.w2
+ y14.v.u2
+ y14.y2.v2
+ y14.y2.w2.u1
+ y14.y22.w2.v
+ y14.y26.w1
+ y15.v2
+ y15.w2.u1
+ y15.y2.w2.v
+ y15.y25.w1
+ y16.w2.v
+ y16.y23.v
+ y16.y24.w2
+ y16.y24.w1
+ y17.y22.v
+ y17.y23.w1
+ y18.u1
+ y18.y2.v
+ y18.y22.w2
+ y19.v
+ y19.y2.w2
+ y19.y2.w1
+ y110.w2
+ y110.w1
+ x1.w1.v2
+ y22.w2.r
+ y25.r
+ y1.y24.r
+ y12.w2.r
+ y12.w1.r
+ y12.y23.r
+ y14.y2.r
+ y3.x12.r
- w1.p =
y2.w2.v.u1
+ y2.w1.v.u1
+ y22.w2.v2
+ y24.v.u1
+ y25.v2
+ y27.w1.w2
+ y1.w2.v.u1
+ y1.w1.v.u2
+ y1.w1.v.u1
+ y1.y2.w1.v2
+ y1.y25.w2.v
+ y1.y28.v
+ y1.y29.w2
+ y12.w2.v2
+ y12.w1.v2
+ y12.y22.v.u1
+ y12.y23.v2
+ y12.y24.w2.v
+ y12.y24.w1.v
+ y12.y27.v
+ y13.p
+ y13.w1.w2.v
+ y13.y22.v2
+ y13.y22.w1.u1
+ y13.y23.w2.v
+ y13.y24.w1.w2
+ y13.y25.u1
+ y13.y26.v
+ y14.v.u2
+ y14.v.u1
+ y14.y2.v2
+ y14.y2.w1.u1
+ y14.y22.w2.v
+ y14.y23.w1.w2
+ y14.y24.u1
+ y14.y25.v
+ y14.y26.w2
+ y15.v2
+ y15.w2.u2
+ y15.w1.u1
+ y15.y22.w1.w2
+ y15.y24.v
+ y15.y25.w1
+ y16.w2.v
+ y16.y24.w2
+ y17.w1.w2
+ y17.y22.v
+ y18.u2
+ y18.u1
+ y18.y2.v
+ y18.y22.w2
+ y18.y22.w1
+ y19.v
+ y19.y2.w1
+ y110.w2
+ y22.w2.r
+ y22.w1.r
+ y25.r
+ y1.y24.r
+ y12.w1.r
+ y12.y23.r
+ y13.y22.r
+ y15.r
+ x1.w1.r
+ y3.x1.x2.r
+ y3.x12.r
- u2.p =
y22.v2.u1
+ y23.w2.v.u1
+ y24.w2.v2
+ y24.w1.v2
+ y25.w1.w2.v
+ y26.v.u1
+ y27.v2
+ y27.w2.u1
+ y1.y2.v2.u1
+ y1.y22.w2.v.u1
+ y1.y24.p
+ y1.y24.w1.w2.v
+ y1.y25.v.u1
+ y1.y26.v2
+ y1.y26.w2.u1
+ y1.y26.w1.u1
+ y1.y27.w2.v
+ y1.y29.u1
+ y1.y210.v
+ y1.y211.w1
+ y12.v2.u2
+ y12.y2.w1.v.u1
+ y12.y22.w2.v2
+ y12.y22.w1.v2
+ y12.y23.w1.w2.v
+ y12.y24.v.u1
+ y12.y25.v2
+ y12.y25.w2.u1
+ y12.y26.w1.v
+ y12.y28.u1
+ y12.y210.w1
+ y13.w2.v.u2
+ y13.y2.w1.v2
+ y13.y22.p
+ y13.y24.w2.u1
+ y13.y26.w1.w2
+ y13.y27.u1
+ y13.y28.v
+ y13.y29.w2
+ y13.y29.w1
+ y14.y23.w1.u1
+ y14.y24.w2.v
+ y14.y25.w1.w2
+ y14.y27.v
+ y14.y28.w2
+ y14.y28.w1
+ y15.y2.v.u1
+ y15.y23.w2.v
+ y15.y23.w1.v
+ y15.y24.w1.w2
+ y15.y25.u1
+ y15.y26.v
+ y16.y2.w2.u1
+ y16.y26.w2
+ y16.y26.w1
+ y17.w2.u2
+ y17.w1.u2
+ y17.y2.w2.v
+ y17.y25.w1
+ y18.y2.w1.w2
+ y18.y22.u1
+ y19.y22.v
+ y19.y23.w2
+ y19.y23.w1
+ y110.u2
+ y110.y22.w2
+ y110.y22.w1
+ y111.y2.w2
+ y2.w1.w2.r
+ y22.u1.r
+ y23.v.r
+ y24.w2.r
+ y24.w1.r
+ y27.r
+ y1.y2.u1.r
+ y1.y22.v.r
+ y1.y23.w2.r
+ y1.y23.w1.r
+ y12.y2.v.r
+ y12.y22.w1.r
+ y12.y25.r
+ y13.y2.w1.r
+ y14.y23.r
+ y16.y2.r
+ x1.u1.r
+ y35.x1.r
+ y33.x12.r
- u1.p =
y22.v2.u1
+ y23.w2.v.u1
+ y24.w2.v2
+ y24.w1.v2
+ y25.w1.w2.v
+ y26.v.u1
+ y27.v2
+ y27.w2.u1
+ y1.y22.w2.v.u1
+ y1.y22.w1.v.u1
+ y1.y23.w2.v2
+ y1.y24.w1.w2.v
+ y1.y26.v2
+ y1.y27.w2.v
+ y1.y28.w1.w2
+ y1.y210.v
+ y1.y211.w2
+ y12.y2.w2.v.u1
+ y12.y22.w1.v2
+ y12.y23.p
+ y12.y23.w1.w2.v
+ y12.y24.v.u1
+ y12.y25.v2
+ y12.y25.w1.u1
+ y12.y26.w1.v
+ y12.y28.u1
+ y12.y29.v
+ y12.y210.w1
+ y13.w2.v.u2
+ y13.w2.v.u1
+ y13.w1.v.u2
+ y13.w1.v.u1
+ y13.y2.w2.v2
+ y13.y22.p
+ y13.y23.v.u1
+ y13.y24.v2
+ y13.y24.w1.u1
+ y13.y27.u1
+ y13.y29.w1
+ y14.w1.v2
+ y14.y2.p
+ y14.y24.w2.v
+ y14.y24.w1.v
+ y14.y26.u1
+ y14.y27.v
+ y14.y28.w2
+ y15.y2.v.u1
+ y15.y22.v2
+ y15.y22.w2.u1
+ y15.y22.w1.u1
+ y15.y23.w2.v
+ y15.y23.w1.v
+ y15.y25.u1
+ y15.y27.w2
+ y16.v.u2
+ y16.v.u1
+ y16.y2.v2
+ y16.y23.w1.w2
+ y16.y24.u1
+ y16.y25.v
+ y16.y26.w2
+ y17.w1.u1
+ y17.y2.w2.v
+ y17.y24.v
+ y17.y25.w1
+ y18.w2.v
+ y18.y22.u1
+ y19.w1.w2
+ y19.y23.w2
+ y110.u2
+ y110.u1
+ y111.y2.w2
+ y112.w2
+ x1.v2.u1
+ y39.x12.x2
+ y2.w1.w2.r
+ y22.u1.r
+ y23.v.r
+ y24.w2.r
+ y24.w1.r
+ y27.r
+ y1.w1.w2.r
+ y1.y23.w2.r
+ y12.u1.r
+ y12.y22.w2.r
+ y13.v.r
+ y13.y2.w2.r
+ y13.y2.w1.r
+ y14.w1.r
+ y14.y23.r
+ y16.y2.r
+ y17.r
+ x1.u1.r
+ y35.x2.r
+ y33.x1.x2.r
+ y33.x12.r
+ y3.x12.x2.r
- p2 =
y24.v4
+ y24.w2.v2.u1
+ y24.w1.v2.u1
+ y25.w2.v3
+ y25.w1.v3
+ y27.v2.u1
+ y28.v3
+ y28.w1.v.u1
+ y29.w1.v2
+ y210.w1.w2.v
+ y211.v.u1
+ y212.v2
+ y213.w1.v
+ y216.v
+ y1.y23.w1.v2.u1
+ y1.y24.w2.v3
+ y1.y25.w1.w2.v2
+ y1.y27.w1.v.u1
+ y1.y28.w2.v2
+ y1.y29.p
+ y1.y210.v.u1
+ y1.y211.v2
+ y1.y211.w2.u1
+ y1.y211.w1.u1
+ y1.y214.u1
+ y12.y22.w1.v2.u1
+ y12.y24.w1.w2.v2
+ y12.y25.v2.u1
+ y12.y26.v3
+ y12.y26.w2.v.u1
+ y12.y26.w1.v.u1
+ y12.y27.w1.v2
+ y12.y28.p
+ y12.y28.w1.w2.v
+ y12.y210.v2
+ y12.y210.w2.u1
+ y12.y212.w1.w2
+ y12.y214.v
+ y13.v3.u2
+ y13.v3.u1
+ y13.y2.w2.v2.u1
+ y13.y22.w2.v3
+ y13.y22.w1.v3
+ y13.y23.v.p
+ y13.y23.w1.w2.v2
+ y13.y24.v2.u1
+ y13.y25.w2.v.u1
+ y13.y25.w1.v.u1
+ y13.y26.w1.v2
+ y13.y27.p
+ y13.y29.v2
+ y13.y210.w2.v
+ y13.y210.w1.v
+ y13.y212.u1
+ y13.y213.v
+ y13.y214.w2
+ y13.y214.w1
+ y14.v4
+ y14.w2.v2.u2
+ y14.w2.v2.u1
+ y14.w1.v2.u2
+ y14.y2.w1.v3
+ y14.y22.v.p
+ y14.y22.w1.w2.v2
+ y14.y24.v3
+ y14.y24.w2.v.u1
+ y14.y25.w1.v2
+ y14.y26.p
+ y14.y26.w1.w2.v
+ y14.y28.w2.u1
+ y14.y28.w1.u1
+ y14.y29.w1.v
+ y14.y211.u1
+ y14.y212.v
+ y14.y213.w2
+ y14.y213.w1
+ y15.w2.v3
+ y15.y22.v2.u1
+ y15.y23.v3
+ y15.y23.w1.v.u1
+ y15.y24.w2.v2
+ y15.y25.p
+ y15.y25.w1.w2.v
+ y15.y26.v.u1
+ y15.y28.w2.v
+ y15.y29.w1.w2
+ y15.y210.u1
+ y15.y211.v
+ y15.y212.w2
+ y16.v.p
+ y16.y22.v3
+ y16.y22.w1.v.u1
+ y16.y23.w1.v2
+ y16.y24.w1.w2.v
+ y16.y26.v2
+ y16.y26.w2.u1
+ y16.y27.w2.v
+ y16.y28.w1.w2
+ y16.y211.w2
+ y17.y2.w2.v.u1
+ y17.y22.w1.v2
+ y17.y23.w1.w2.v
+ y17.y25.w1.u1
+ y17.y26.w1.v
+ y17.y27.w1.w2
+ y17.y210.w2
+ y17.y210.w1
+ y18.v3
+ y18.w2.v.u2
+ y18.w2.v.u1
+ y18.w1.v.u1
+ y18.y2.w2.v2
+ y18.y2.w1.v2
+ y18.y22.p
+ y18.y23.v.u1
+ y18.y24.v2
+ y19.y2.p
+ y19.y2.w1.w2.v
+ y19.y23.v2
+ y19.y23.w2.u1
+ y19.y23.w1.u1
+ y19.y24.w2.v
+ y19.y24.w1.v
+ y19.y25.w1.w2
+ y19.y28.w2
+ y110.p
+ y110.w1.w2.v
+ y110.y2.v.u1
+ y110.y22.v2
+ y110.y23.w2.v
+ y110.y24.w1.w2
+ y110.y27.w2
+ y111.v.u2
+ y111.y2.w2.u1
+ y111.y22.w1.v
+ y111.y24.u1
+ y111.y25.v
+ y111.y26.w2
+ y112.v2
+ y112.w2.u1
+ y112.y2.w2.v
+ y112.y22.w1.w2
+ y112.y24.v
+ y112.y25.w1
+ y113.w2.v
+ y113.y2.w1.w2
+ y113.y24.w2
+ y113.y24.w1
+ y114.y2.u1
+ y115.u2
+ y115.u1
+ y115.y2.v
+ y116.y2.w1
+ y117.w2
+ y117.w1
+ y23.v.u1.r
+ y24.v2.r
+ y25.w2.v.r
+ y25.w1.v.r
+ y27.u1.r
+ y29.w2.r
+ y29.w1.r
+ y1.y22.v.u1.r
+ y1.y23.w2.u1.r
+ y1.y23.w1.u1.r
+ y1.y24.w2.v.r
+ y1.y24.w1.v.r
+ y1.y27.v.r
+ y1.y28.w2.r
+ y1.y211.r
+ y12.y22.v2.r
+ y12.y22.w1.u1.r
+ y12.y24.w1.w2.r
+ y12.y210.r
+ y13.v.u2.r
+ y13.v.u1.r
+ y13.y2.w1.u1.r
+ y13.y22.w2.v.r
+ y13.y22.w1.v.r
+ y13.y23.w1.w2.r
+ y13.y25.v.r
+ y13.y26.w1.r
+ y13.y29.r
+ y14.w1.u2.r
+ y14.w1.u1.r
+ y14.y2.w2.v.r
+ y14.y23.u1.r
+ y14.y28.r
+ y15.y2.w1.w2.r
+ y15.y22.u1.r
+ y15.y24.w2.r
+ y16.y2.u1.r
+ y16.y22.v.r
+ y16.y23.w2.r
+ y17.u2.r
+ y17.y2.v.r
+ y17.y22.w2.r
+ y17.y22.w1.r
+ y18.v.r
+ y18.y2.w1.r
+ y18.y24.r
+ y111.y2.r
+ y34.r2
+ y24.r2
+ y12.y22.r2
+ y14.r2
+ x12.r2
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y12.x2 =
0
- x13 =
0
- x12.w1 =
0
- x1.x2.v =
0
- x12.v =
0
- x12.u1 =
y33.x12.x2
- x1.w1.u1 =
0
This cohomology ring was obtained from a calculation
out to degree 20. The cohomology ring approximation
is stable from degree 20 onwards, and
Benson's tests detect stability from degree 20
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r
in degree 8
- h2 =
v
+ y34
+ y24
+ y1.w1
+ y12.y22
+ y14
in degree 4
- h3 =
y22.v
+ y1.y2.v
+ y1.y22.w1
+ y12.v
+ y12.y2.w1
+ y12.y24
+ y13.w1
+ y14.y22
in degree 6
- h4 =
y1
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 9, 13, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y3
in degree 1
-
y2
in degree 1
-
y32
in degree 2
-
y22
in degree 2
-
x2
in degree 2
-
x1
in degree 2
-
w2
in degree 3
-
w1
in degree 3
-
y33
in degree 3
-
y23
in degree 3
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
y34
in degree 4
-
y2.w2
in degree 4
-
y2.w1
in degree 4
-
y24
in degree 4
-
y32.x2
in degree 4
-
y32.x1
in degree 4
-
x1.x2
in degree 4
-
x12
in degree 4
-
u2
in degree 5
-
u1
in degree 5
-
y22.w2
in degree 5
-
y22.w1
in degree 5
-
y25
in degree 5
-
x1.w1
in degree 5
-
y33.x2
in degree 5
-
y33.x1
in degree 5
-
y3.x1.x2
in degree 5
-
y3.x12
in degree 5
-
w1.w2
in degree 6
-
y2.u1
in degree 6
-
y23.w2
in degree 6
-
y23.w1
in degree 6
-
y34.x2
in degree 6
-
y34.x1
in degree 6
-
y32.x1.x2
in degree 6
-
y32.x12
in degree 6
-
x12.x2
in degree 6
-
y2.w1.w2
in degree 7
-
y22.u1
in degree 7
-
y24.w2
in degree 7
-
y24.w1
in degree 7
-
x1.u1
in degree 7
-
y33.x1.x2
in degree 7
-
y33.x12
in degree 7
-
y3.x12.x2
in degree 7
-
w2.u2
in degree 8
-
w2.u1
in degree 8
-
w1.u2
in degree 8
-
w1.u1
in degree 8
-
y22.w1.w2
in degree 8
-
y23.u1
in degree 8
-
y25.w2
in degree 8
-
y25.w1
in degree 8
-
y32.x12.x2
in degree 8
-
y2.w2.u1
in degree 9
-
y2.w1.u1
in degree 9
-
y23.w1.w2
in degree 9
-
y24.u1
in degree 9
-
y33.x12.x2
in degree 9
-
p
in degree 10
-
y22.w2.u1
in degree 10
-
y22.w1.u1
in degree 10
-
y24.w1.w2
in degree 10
-
y25.u1
in degree 10
-
y2.p
in degree 11
-
y23.w2.u1
in degree 11
-
y23.w1.u1
in degree 11
-
y25.w1.w2
in degree 11
-
y22.p
in degree 12
-
y24.w2.u1
in degree 12
-
y24.w1.u1
in degree 12
-
y23.p
in degree 13
-
y25.w2.u1
in degree 13
-
y25.w1.u1
in degree 13
-
y24.p
in degree 14
-
y25.p
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y3
in degree 1
-
y32
in degree 2
-
x1
in degree 2
-
y33
in degree 3
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
x2.h
in degree 3
-
y34
in degree 4
-
y32.x2
in degree 4
-
y32.x1
in degree 4
-
x1.x2
in degree 4
-
x12
in degree 4
-
x1.w1
in degree 5
-
y33.x2
in degree 5
-
y33.x1
in degree 5
-
y3.x1.x2
in degree 5
-
y3.x12
in degree 5
-
y34.x2
in degree 6
-
y34.x1
in degree 6
-
y32.x1.x2
in degree 6
-
y32.x12
in degree 6
-
x12.x2
in degree 6
-
x1.u1
in degree 7
-
y33.x1.x2
in degree 7
-
y33.x12
in degree 7
-
y3.x12.x2
in degree 7
-
y32.x12.x2
in degree 8
-
y33.x12.x2
in degree 9
-
y25.u1
+ y23.u1.h2
+ y25.w2.h2
+ y2.u1.h4
+ y23.w2.h4
+ u2.h5
+ u1.h5
+ w2.h7
in degree 10
-
y25.w2.u1
+ y23.w2.u1.h2
+ y25.w22.h2
+ y2.w2.u1.h4
+ y23.w22.h4
+ w2.u2.h5
+ w2.u1.h5
+ w22.h7
in degree 13
-
y25.w1.u1
+ y23.w1.u1.h2
+ y25.w1.w2.h2
+ y2.w1.u1.h4
+ y23.w1.w2.h4
+ w1.u2.h5
+ w1.u1.h5
+ w1.w2.h7
in degree 13
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y3
in degree 1
-
y32
in degree 2
-
x2
in degree 2
-
x1
in degree 2
-
y33
in degree 3
-
y3.x2
in degree 3
-
y3.x1
in degree 3
-
y1.x2
in degree 3
-
y34
in degree 4
-
y32.x2
in degree 4
-
y32.x1
in degree 4
-
x1.x2
in degree 4
-
x12
in degree 4
-
x1.w1
in degree 5
-
y33.x2
in degree 5
-
y33.x1
in degree 5
-
y3.x1.x2
in degree 5
-
y3.x12
in degree 5
-
y34.x2
in degree 6
-
y34.x1
in degree 6
-
y32.x1.x2
in degree 6
-
y32.x12
in degree 6
-
x12.x2
in degree 6
-
x1.u1
in degree 7
-
y33.x1.x2
in degree 7
-
y33.x12
in degree 7
-
y3.x12.x2
in degree 7
-
y32.x12.x2
in degree 8
-
y33.x12.x2
in degree 9
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- v restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- r restricts to
y8
- p restricts to
0
Restriction to special subgroup number 2, which is 4gp2
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- v restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- r restricts to
y14.y24
+ y18
- p restricts to
y14.y26
+ y18.y22
Restriction to special subgroup number 3, which is 16gp14
- y1 restricts to
y2
- y2 restricts to
y3
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y22.y4
+ y1.y32
+ y12.y3
- w2 restricts to
y3.y42
+ y32.y4
+ y1.y22
+ y12.y2
- v restricts to
y44
+ y32.y42
+ y22.y3.y4
+ y23.y4
+ y1.y2.y32
+ y12.y2.y3
- u1 restricts to
y33.y42
+ y34.y4
+ y2.y33.y4
+ y23.y3.y4
+ y1.y34
+ y1.y23.y3
+ y1.y24
+ y12.y2.y32
+ y14.y3
+ y14.y2
- u2 restricts to
y33.y42
+ y34.y4
+ y2.y33.y4
+ y22.y32.y4
+ y1.y34
+ y1.y2.y33
+ y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y14.y3
- r restricts to
y2.y32.y45
+ y2.y33.y44
+ y2.y34.y43
+ y2.y36.y4
+ y22.y46
+ y22.y3.y45
+ y22.y34.y42
+ y22.y35.y4
+ y23.y45
+ y23.y32.y43
+ y23.y33.y42
+ y23.y34.y4
+ y24.y44
+ y25.y43
+ y25.y3.y42
+ y25.y32.y4
+ y1.y33.y44
+ y1.y35.y42
+ y1.y22.y35
+ y1.y23.y32.y42
+ y1.y23.y33.y4
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y24.y33
+ y1.y25.y42
+ y1.y26.y4
+ y1.y26.y3
+ y12.y34.y42
+ y12.y35.y4
+ y12.y2.y3.y44
+ y12.y2.y33.y42
+ y12.y2.y35
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y24.y3.y4
+ y12.y24.y32
+ y12.y25.y4
+ y12.y26
+ y13.y23.y32
+ y13.y25
+ y14.y44
+ y14.y33.y4
+ y14.y34
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y23.y3
+ y14.y24
+ y15.y22.y3
+ y15.y23
+ y16.y2.y3
+ y16.y22
+ y18
- p restricts to
y32.y48
+ y34.y46
+ y35.y45
+ y36.y44
+ y37.y43
+ y39.y4
+ y2.y32.y47
+ y2.y37.y42
+ y22.y48
+ y22.y3.y47
+ y22.y33.y45
+ y22.y37.y4
+ y23.y3.y46
+ y23.y32.y45
+ y23.y33.y44
+ y23.y34.y43
+ y23.y36.y4
+ y24.y46
+ y24.y3.y45
+ y24.y32.y44
+ y24.y33.y43
+ y24.y34.y42
+ y25.y45
+ y25.y3.y44
+ y25.y33.y42
+ y25.y34.y4
+ y26.y44
+ y26.y3.y43
+ y27.y43
+ y29.y4
+ y1.y33.y46
+ y1.y34.y45
+ y1.y35.y44
+ y1.y36.y43
+ y1.y37.y42
+ y1.y38.y4
+ y1.y2.y36.y42
+ y1.y2.y37.y4
+ y1.y22.y3.y46
+ y1.y22.y32.y45
+ y1.y22.y36.y4
+ y1.y23.y46
+ y1.y23.y32.y44
+ y1.y23.y35.y4
+ y1.y23.y36
+ y1.y24.y45
+ y1.y24.y3.y44
+ y1.y24.y32.y43
+ y1.y24.y33.y42
+ y1.y24.y35
+ y1.y25.y32.y42
+ y1.y25.y33.y4
+ y1.y25.y34
+ y1.y26.y43
+ y1.y26.y3.y42
+ y1.y26.y32.y4
+ y1.y26.y33
+ y1.y27.y32
+ y1.y28.y4
+ y1.y28.y3
+ y12.y32.y46
+ y12.y33.y45
+ y12.y35.y43
+ y12.y37.y4
+ y12.y2.y3.y46
+ y12.y2.y32.y45
+ y12.y2.y35.y42
+ y12.y22.y46
+ y12.y22.y32.y44
+ y12.y22.y34.y42
+ y12.y22.y36
+ y12.y23.y45
+ y12.y24.y3.y43
+ y12.y24.y33.y4
+ y12.y25.y43
+ y12.y25.y32.y4
+ y12.y25.y33
+ y12.y27.y4
+ y13.y35.y42
+ y13.y36.y4
+ y13.y37
+ y13.y2.y32.y44
+ y13.y2.y34.y42
+ y13.y2.y36
+ y13.y22.y3.y44
+ y13.y22.y34.y4
+ y13.y22.y35
+ y13.y23.y34
+ y13.y25.y42
+ y13.y25.y32
+ y13.y26.y4
+ y13.y26.y3
+ y13.y27
+ y14.y32.y44
+ y14.y35.y4
+ y14.y2.y3.y44
+ y14.y2.y32.y43
+ y14.y2.y34.y4
+ y14.y2.y35
+ y14.y22.y3.y43
+ y14.y22.y32.y42
+ y14.y23.y32.y4
+ y14.y24.y42
+ y14.y25.y4
+ y14.y25.y3
+ y15.y33.y42
+ y15.y34.y4
+ y15.y35
+ y15.y2.y34
+ y15.y22.y3.y42
+ y15.y22.y32.y4
+ y15.y22.y33
+ y15.y23.y42
+ y15.y24.y4
+ y15.y24.y3
+ y15.y25
+ y16.y32.y42
+ y16.y33.y4
+ y16.y34
+ y16.y2.y3.y42
+ y16.y2.y32.y4
+ y16.y22.y42
+ y16.y23.y4
+ y16.y23.y3
+ y16.y24
+ y17.y2.y32
+ y17.y22.y3
+ y18.y32
+ y18.y2.y3
+ y18.y22
(1 + 2t + 3t2
+ 4t3 + 4t4 + 5t5
+ 4t6 + 2t7 + 3t8
+ 3t9 + 3t10 + 3t11
+ 3t12 + 4t13 + 2t14
+ t15 + t16) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 128