Small group number 6665 of order 256
G = Syl2(Ly) is Sylow 2-group of 2A_11 and of Ly
G has 3 minimal generators, rank 4 and exponent 8.
The centre has rank 1.
There are 4 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3, 3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 15 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- x1 in degree 2, a nilpotent element
- x2 in degree 2
- w1 in degree 3
- w2 in degree 3
- v1 in degree 4
- v2 in degree 4
- u1 in degree 5
- u2 in degree 5
- t in degree 6
- s in degree 7
- r1 in degree 8
- r2 in degree 8, a regular element
There are 65 minimal relations:
- y2.y3 =
0
- y1.y3 =
0
- y1.x2 =
0
- y3.x1 =
0
- y2.x1 =
0
- y3.w2 =
0
- y2.w2 =
y1.w1
+ x12
- y2.w1 =
y1.w1
+ x12
- y1.w2 =
y1.w1
+ y12.x1
+ x12
- x1.x2 =
0
- x2.w2 =
0
- y2.v2 =
0
- y2.v1 =
y1.v1
+ y1.x12
- y1.v2 =
0
- x1.w2 =
y1.x12
- x1.w1 =
0
- w22 =
y12.v1
- w1.w2 =
y12.v1
+ y12.x12
- w12 =
x2.v1
+ y3.u1
+ y3.x2.w1
+ y33.w1
+ y12.v1
+ x1.v1
+ y12.x12
- y3.u2 =
y3.u1
+ y3.x2.w1
+ y32.v1
- y2.u2 =
y13.w1
+ y12.x12
- y1.u2 =
y13.w1
+ y12.x12
- x1.v2 =
0
- w2.v2 =
0
- w1.v2 =
x2.u1
+ y3.t
+ y3.x2.v2
+ y32.x2.w1
+ y33.v2
+ y2.t
+ y14.w1
+ y13.x12
- x2.u2 =
x2.u1
+ x22.w1
+ y3.x2.v1
+ y2.t
+ y14.w1
+ y13.x12
- y1.t =
y14.w1
+ y13.x12
- x1.u2 =
0
- x1.u1 =
0
- v22 =
x22.v1
+ y3.x22.w1
+ y32.x2.v2
+ y34.v1
- w2.u2 =
y14.v1
+ y14.x12
- w2.u1 =
y1.s
+ y1.w1.v1
+ y1.y22.u1
+ y12.y2.u1
+ y13.u1
+ y16.x1
+ y14.x12
- w1.u2 =
w1.u1
+ x22.v1
+ y3.w1.v1
+ y3.x2.u1
+ y3.x22.w1
+ y33.x2.w1
+ y1.s
+ y1.w1.v1
+ y1.y22.u1
+ y12.y2.u1
+ y13.u1
+ y14.v1
+ y16.x1
- y3.s =
y3.x2.u1
+ y32.x2.v2
+ y32.x2.v1
+ y33.x2.w1
- y2.s =
y23.u1
+ y1.s
+ y13.u1
+ y16.x1
+ y14.x12
- x1.t =
0
- v2.u2 =
x2.w1.v1
+ x22.u1
+ y3.r1
+ y3.v1.v2
+ y3.v12
+ y3.x2.t
+ y3.x22.v1
+ y32.x22.w1
+ y33.x2.v2
+ y33.x2.v1
+ y35.v1
+ y36.w1
+ y2.x2.t
- v2.u1 =
x2.w1.v1
+ y3.r1
+ y3.v12
+ y3.x22.v2
+ y3.x22.v1
+ y33.x2.v1
+ y35.v1
+ y36.w1
- w2.t =
y15.v1
+ y15.x12
- x2.s =
x22.u1
+ y3.x22.v2
+ y3.x22.v1
+ y32.x22.w1
+ y2.x2.t
+ y23.t
+ y16.w1
+ y15.x12
- y2.r1 =
y23.t
+ y1.v12
+ y12.s
+ y13.y2.u1
+ y14.u1
+ y17.x1
+ y15.x12
- y1.r1 =
y1.v12
+ y12.s
+ y12.y22.u1
+ y14.u1
+ y16.w1
- x1.s =
y15.x12
- u22 =
x2.v12
+ x23.v1
+ y3.v1.u1
+ y3.x22.u1
+ y3.x23.w1
+ y32.r1
+ y32.v1.v2
+ y32.w1.u1
+ y32.x22.v1
+ y33.x2.u1
+ y33.x22.w1
+ y34.t
+ y35.u1
+ y35.x2.w1
+ y36.v2
+ y36.v1
+ y16.v1
+ x1.v12
+ y16.x12
+ y32.r2
- u1.u2 =
x2.v12
+ x2.w1.u1
+ y32.r1
+ y32.v1.v2
+ y32.v12
+ y32.w1.u1
+ y32.x22.v1
+ y33.x2.u1
+ y34.t
+ y35.u1
+ y35.x2.w1
+ y36.v2
+ y36.v1
+ y13.s
+ y13.w1.v1
+ y13.y22.u1
+ y14.y2.u1
+ y15.u1
+ x1.v12
+ y18.x1
+ y16.x12
+ y32.r2
- u12 =
x2.v12
+ y3.v1.u1
+ y32.r1
+ y32.v1.v2
+ y32.v12
+ y32.w1.u1
+ y32.x22.v1
+ y33.x2.u1
+ y34.t
+ y35.u1
+ y35.x2.w1
+ y36.v2
+ y36.v1
+ y12.v12
+ y12.y23.u1
+ y13.s
+ y13.w1.v1
+ y13.y22.u1
+ y14.y2.u1
+ y15.u1
+ x1.v12
+ y18.x1
+ y16.x12
+ y32.r2
+ y22.r2
- v2.t =
x2.r1
+ x2.v12
+ x23.v2
+ x23.v1
+ y3.x22.u1
+ y32.x22.v2
+ y33.w1.v1
+ y34.x2.v2
+ y35.x2.w1
+ y36.v1
+ y22.x2.t
- w2.s =
y1.v1.u1
+ y12.v12
+ y13.s
+ y13.w1.v1
+ y13.y22.u1
+ y14.y2.u1
+ y15.u1
+ y18.x1
- w1.s =
x2.w1.u1
+ y3.x2.w1.v1
+ y3.x22.u1
+ y32.x2.t
+ y32.x22.v2
+ y32.x22.v1
+ y33.x2.u1
+ y34.x2.v2
+ y35.x2.w1
+ y1.v1.u1
+ y12.v12
+ y13.s
+ y13.w1.v1
+ y13.y22.u1
+ y14.y2.u1
+ y15.u1
+ y18.x1
+ y16.x12
- x1.r1 =
x1.v12
+ y16.x12
- u2.t =
w1.r1
+ w1.v12
+ x2.w1.t
+ x22.w1.v1
+ x23.u1
+ y3.v1.t
+ y3.x2.w1.u1
+ y3.x22.t
+ y32.w1.t
+ y32.x22.u1
+ y32.x23.w1
+ y33.x2.t
+ y33.x22.v2
+ y34.w1.v1
+ y35.x2.v2
+ y35.x2.v1
+ y36.u1
+ y36.x2.w1
+ y38.w1
+ y2.x22.t
+ y12.v1.u1
+ y13.v12
+ y14.s
+ y14.w1.v1
+ y14.y22.u1
+ y15.y2.u1
+ y16.u1
+ y19.x1
+ y17.x12
+ y3.x2.r2
- u1.t =
w1.r1
+ w1.v12
+ x22.w1.v1
+ x23.u1
+ y3.x2.w1.u1
+ y3.x22.t
+ y32.w1.t
+ y32.x22.u1
+ y32.x23.w1
+ y33.x2.t
+ y33.x22.v2
+ y34.w1.v1
+ y35.x2.v2
+ y35.x2.v1
+ y36.u1
+ y36.x2.w1
+ y38.w1
+ y2.x22.t
+ y12.v1.u1
+ y13.v12
+ y17.v1
+ y17.x12
+ y3.x2.r2
+ y2.x2.r2
- v2.s =
x22.w1.v1
+ y3.x2.r1
+ y3.x2.v12
+ y3.x2.w1.u1
+ y3.x23.v2
+ y32.w1.t
+ y32.x2.w1.v1
+ y32.x22.u1
+ y32.x23.w1
+ y33.r1
+ y33.v12
+ y33.x2.t
+ y33.x22.v2
+ y33.x22.v1
+ y34.x2.u1
+ y35.x2.v2
+ y35.x2.v1
+ y37.v1
+ y38.w1
- w2.r1 =
w2.v12
+ y12.v1.u1
+ y13.v12
+ y14.s
+ y14.w1.v1
+ y14.y22.u1
+ y15.y2.u1
+ y16.u1
+ y17.v1
+ y19.x1
+ y17.x12
- t2 =
x22.r1
+ x22.v12
+ x24.v1
+ y3.x23.u1
+ y32.x2.r1
+ y32.x23.v2
+ y32.x23.v1
+ y33.v1.u1
+ y33.x2.w1.v1
+ y33.x23.w1
+ y34.x2.t
+ y34.x22.v2
+ y35.w1.v1
+ y36.x2.v1
+ y37.x2.w1
+ y38.v1
+ y22.x22.t
+ y18.v1
+ y18.x12
+ x22.r2
- u2.s =
x22.v12
+ x22.w1.u1
+ y3.x2.v1.u1
+ y3.x23.u1
+ y32.x2.v12
+ y32.x22.t
+ y32.x23.v1
+ y33.x2.w1.v1
+ y34.x2.t
+ y34.x22.v2
+ y34.x22.v1
+ y35.x2.u1
+ y36.x2.v2
+ y37.x2.w1
+ y13.v1.u1
+ y14.v12
+ y15.s
+ y15.w1.v1
+ y15.y22.u1
+ y16.y2.u1
+ y17.u1
+ y110.x1
+ y18.x12
+ y32.x2.r2
- u1.s =
x22.v12
+ y3.x22.w1.v1
+ y32.x2.w1.u1
+ y32.x23.v2
+ y33.w1.t
+ y33.x2.w1.v1
+ y33.x22.u1
+ y34.r1
+ y34.v12
+ y34.x2.t
+ y34.x22.v2
+ y34.x22.v1
+ y36.x2.v2
+ y36.x2.v1
+ y38.v1
+ y39.w1
+ y1.v1.s
+ y12.y25.u1
+ y13.y24.u1
+ y14.v12
+ y14.y23.u1
+ y32.x2.r2
+ y24.r2
+ y1.w1.r2
+ y1.y23.r2
+ y12.y22.r2
+ x12.r2
- v2.r1 =
v12.v2
+ x2.v1.t
+ x22.w1.u1
+ x24.v1
+ y3.x24.w1
+ y32.x2.r1
+ y32.x2.v12
+ y32.x23.v1
+ y33.v1.u1
+ y34.v1.v2
+ y35.x2.u1
+ y36.t
+ y36.x2.v2
+ y36.x2.v1
+ y38.v2
- t.s =
x2.w1.r1
+ x2.w1.v12
+ x23.w1.v1
+ x24.u1
+ y3.x2.v1.t
+ y3.x22.r1
+ y3.x22.v12
+ y3.x22.w1.u1
+ y3.x23.t
+ y3.x24.v2
+ y3.x24.v1
+ y32.x24.w1
+ y33.x22.t
+ y35.x22.v1
+ y36.x2.u1
+ y37.x2.v1
+ y38.x2.w1
+ y2.x23.t
+ y14.v1.u1
+ y15.v12
+ y16.s
+ y16.w1.v1
+ y16.y22.u1
+ y17.y2.u1
+ y18.u1
+ y111.x1
+ y19.x12
+ y3.x22.r2
+ y23.x2.r2
- u2.r1 =
v12.u2
+ w1.v1.t
+ x2.w1.r1
+ x2.w1.v12
+ x22.v1.u1
+ x23.w1.v1
+ y3.v1.r1
+ y3.v13
+ y3.x2.v1.t
+ y3.x22.r1
+ y3.x24.v2
+ y32.w1.r1
+ y32.w1.v12
+ y32.x2.v1.u1
+ y32.x2.w1.t
+ y32.x23.u1
+ y32.x24.w1
+ y33.x2.w1.u1
+ y33.x22.t
+ y34.w1.t
+ y34.x2.w1.v1
+ y34.x22.u1
+ y35.v12
+ y35.w1.u1
+ y35.x2.t
+ y35.x22.v2
+ y35.x22.v1
+ y36.x22.w1
+ y37.t
+ y38.u1
+ y38.x2.w1
+ y39.v2
+ y310.w1
+ y14.v1.u1
+ y16.s
+ y16.w1.v1
+ y16.y22.u1
+ y17.y2.u1
+ y18.u1
+ y19.v1
+ y111.x1
+ y3.v2.r2
- u1.r1 =
v12.u1
+ w1.v1.t
+ x22.v1.u1
+ x23.w1.v1
+ y3.x2.v1.t
+ y3.x22.r1
+ y3.x24.v2
+ y32.w1.r1
+ y32.w1.v12
+ y32.x2.v1.u1
+ y32.x2.w1.t
+ y32.x23.u1
+ y32.x24.w1
+ y33.x2.w1.u1
+ y33.x22.t
+ y34.w1.t
+ y34.x2.w1.v1
+ y34.x22.u1
+ y35.v12
+ y35.w1.u1
+ y35.x2.t
+ y35.x22.v2
+ y35.x22.v1
+ y36.x22.w1
+ y37.t
+ y38.u1
+ y38.x2.w1
+ y39.v2
+ y310.w1
+ y12.v1.s
+ y14.y24.u1
+ y16.s
+ y16.w1.v1
+ y16.y22.u1
+ y17.y2.u1
+ y18.u1
+ y111.x1
+ y19.x12
+ y3.v2.r2
+ y23.x2.r2
+ y12.w1.r2
+ y12.y23.r2
+ y1.x12.r2
- s2 =
x23.v12
+ y3.x22.v1.u1
+ y32.x22.r1
+ y33.x2.w1.t
+ y33.x22.w1.v1
+ y33.x23.u1
+ y33.x24.w1
+ y34.x2.r1
+ y34.x2.v12
+ y34.x22.t
+ y34.x23.v1
+ y35.x22.u1
+ y35.x23.w1
+ y36.x22.v2
+ y36.x22.v1
+ y38.x2.v1
+ y39.x2.w1
+ y12.y27.u1
+ y13.v1.s
+ y13.w1.v12
+ y14.y25.u1
+ y16.v12
+ y16.y23.u1
+ y17.s
+ y17.w1.v1
+ y17.y22.u1
+ y18.y2.u1
+ y19.u1
+ y112.x1
+ y32.x22.r2
+ y26.r2
+ y12.v1.r2
+ y12.y24.r2
+ y14.y22.r2
+ y12.x12.r2
- t.r1 =
v12.t
+ x23.r1
+ x23.v12
+ x25.v2
+ y3.x2.w1.r1
+ y3.x2.w1.v12
+ y3.x22.w1.t
+ y3.x23.w1.v1
+ y3.x25.w1
+ y32.w1.v1.u1
+ y32.x2.v1.t
+ y32.x22.w1.u1
+ y32.x23.t
+ y32.x24.v1
+ y34.v1.t
+ y34.x2.v12
+ y35.v1.u1
+ y35.w1.t
+ y35.x23.w1
+ y36.x2.t
+ y36.x22.v2
+ y36.x22.v1
+ y37.x2.u1
+ y37.x22.w1
+ y38.x2.v2
+ y39.x2.w1
+ y22.x23.t
+ y15.v1.u1
+ y16.v12
+ y17.s
+ y17.w1.v1
+ y17.y22.u1
+ y18.y2.u1
+ y19.u1
+ y110.v1
+ y112.x1
+ x2.v2.r2
+ y32.x22.r2
+ y22.x22.r2
- s.r1 =
v12.s
+ x2.w1.v1.t
+ x23.v1.u1
+ x24.w1.v1
+ y3.x2.v1.r1
+ y3.x2.v13
+ y3.x23.r1
+ y3.x23.w1.u1
+ y3.x25.v2
+ y3.x25.v1
+ y32.x22.v1.u1
+ y32.x22.w1.t
+ y32.x24.u1
+ y33.x22.r1
+ y33.x22.v12
+ y33.x22.w1.u1
+ y33.x23.t
+ y33.x24.v1
+ y34.x2.v1.u1
+ y34.x2.w1.t
+ y34.x22.w1.v1
+ y34.x23.u1
+ y35.x2.v12
+ y35.x22.t
+ y35.x23.v2
+ y35.x23.v1
+ y36.w1.t
+ y36.x2.w1.v1
+ y36.x22.u1
+ y36.x23.w1
+ y37.r1
+ y37.v12
+ y37.x22.v1
+ y39.x2.v1
+ y311.v1
+ y312.w1
+ y14.v1.s
+ y14.w1.v12
+ y14.y26.u1
+ y15.y25.u1
+ y16.v1.u1
+ y16.y24.u1
+ y111.x12
+ y3.x2.v2.r2
+ y25.x2.r2
+ y12.y25.r2
+ y13.v1.r2
+ y13.y24.r2
+ y14.y23.r2
+ y13.x12.r2
- r12 =
v14
+ x22.v1.r1
+ x22.v13
+ x26.v1
+ y3.x22.w1.r1
+ y3.x22.w1.v12
+ y3.x23.v1.u1
+ y3.x24.w1.v1
+ y3.x26.w1
+ y32.x2.v1.r1
+ y32.x22.v1.t
+ y32.x25.v2
+ y32.x25.v1
+ y33.v12.u1
+ y33.x2.w1.r1
+ y33.x2.w1.v12
+ y33.x22.v1.u1
+ y33.x23.w1.v1
+ y33.x24.u1
+ y33.x25.w1
+ y34.v1.r1
+ y34.v12.v2
+ y34.v13
+ y34.w1.v1.u1
+ y34.x22.r1
+ y34.x22.v12
+ y34.x22.w1.u1
+ y34.x23.t
+ y35.x24.w1
+ y36.v1.t
+ y36.x2.r1
+ y36.x2.v12
+ y36.x22.t
+ y36.x23.v2
+ y37.v1.u1
+ y38.v1.v2
+ y38.x2.t
+ y39.x2.u1
+ y310.x2.v2
+ y311.u1
+ y311.x2.w1
+ y313.w1
+ y15.v1.s
+ y15.w1.v12
+ y16.y25.u1
+ y18.v12
+ y19.s
+ y19.w1.v1
+ y19.y22.u1
+ y110.y2.u1
+ y111.u1
+ y112.v1
+ y114.x1
+ y112.x12
+ x22.v1.r2
+ y3.x22.w1.r2
+ y32.x2.v2.r2
+ y34.v1.r2
+ y34.x22.r2
+ y24.x22.r2
+ y14.v1.r2
+ y14.y24.r2
+ y14.x12.r2
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- x13 =
0
- y1.x1.v1 =
0
- y2.x2.u1 =
y22.t
+ y15.w1
+ y14.x12
- x12.v1 =
0
- y1.w1.u1 =
y12.s
+ y12.w1.v1
+ y12.y22.u1
+ y13.y2.u1
+ y14.u1
+ y17.x1
+ y15.x12
- x2.v1.v2 =
x2.w1.u1
+ y3.w1.t
+ y3.x2.w1.v1
+ y32.r1
+ y32.v12
+ y32.x22.v2
+ y33.x2.u1
+ y33.x22.w1
+ y34.x2.v1
+ y35.x2.w1
+ y36.v1
+ y37.w1
This cohomology ring was obtained from a calculation
out to degree 17. The cohomology ring approximation
is stable from degree 16 onwards, and
Benson's tests detect stability from degree 17
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
r2
in degree 8
- h2 =
v1
+ x22
+ y34
+ y24
+ y12.y22
+ y14
in degree 4
- h3 =
x2.v1
+ y32.v1
+ y32.x22
+ y22.x22
+ y12.v1
+ y12.y24
+ y14.y22
in degree 6
- h4 =
y3
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 7, 14, 15.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y2
in degree 1
-
y1
in degree 1
-
x2
in degree 2
-
y22
in degree 2
-
y1.y2
in degree 2
-
y12
in degree 2
-
x1
in degree 2
-
w2
in degree 3
-
w1
in degree 3
-
y2.x2
in degree 3
-
y23
in degree 3
-
y1.y22
in degree 3
-
y12.y2
in degree 3
-
y13
in degree 3
-
y1.x1
in degree 3
-
v2
in degree 4
-
x22
in degree 4
-
y22.x2
in degree 4
-
y24
in degree 4
-
y1.w1
in degree 4
-
y1.y23
in degree 4
-
y12.y22
in degree 4
-
y13.y2
in degree 4
-
y14
in degree 4
-
y12.x1
in degree 4
-
x12
in degree 4
-
u2
in degree 5
-
u1
in degree 5
-
x2.w1
in degree 5
-
y23.x2
in degree 5
-
y25
in degree 5
-
y1.y24
in degree 5
-
y12.w1
in degree 5
-
y12.y23
in degree 5
-
y13.y22
in degree 5
-
y14.y2
in degree 5
-
y15
in degree 5
-
y13.x1
in degree 5
-
y1.x12
in degree 5
-
t
in degree 6
-
x2.v2
in degree 6
-
y2.u1
in degree 6
-
y24.x2
in degree 6
-
y26
in degree 6
-
y1.u1
in degree 6
-
y12.y24
in degree 6
-
y13.w1
in degree 6
-
y13.y23
in degree 6
-
y14.y22
in degree 6
-
y15.y2
in degree 6
-
y16
in degree 6
-
y14.x1
in degree 6
-
y12.x12
in degree 6
-
s
in degree 7
-
x2.u1
in degree 7
-
x22.w1
in degree 7
-
y2.t
in degree 7
-
y22.u1
in degree 7
-
y25.x2
in degree 7
-
y1.y2.u1
in degree 7
-
y12.u1
in degree 7
-
y13.y24
in degree 7
-
y14.w1
in degree 7
-
y14.y23
in degree 7
-
y15.y22
in degree 7
-
y16.y2
in degree 7
-
y13.x12
in degree 7
-
r
in degree 8
-
w1.u1
in degree 8
-
x2.t
in degree 8
-
x22.v2
in degree 8
-
y22.t
in degree 8
-
y23.u1
in degree 8
-
y26.x2
in degree 8
-
y1.s
in degree 8
-
y1.y22.u1
in degree 8
-
y12.y2.u1
in degree 8
-
y13.u1
in degree 8
-
y14.y24
in degree 8
-
y15.w1
in degree 8
-
y15.y23
in degree 8
-
y16.y22
in degree 8
-
w1.t
in degree 9
-
x22.u1
in degree 9
-
y2.x2.t
in degree 9
-
y23.t
in degree 9
-
y24.u1
in degree 9
-
y1.y23.u1
in degree 9
-
y12.s
in degree 9
-
y12.y22.u1
in degree 9
-
y13.y2.u1
in degree 9
-
y14.u1
in degree 9
-
y15.y24
in degree 9
-
y16.y23
in degree 9
-
x2.r
in degree 10
-
x22.t
in degree 10
-
y24.t
in degree 10
-
y25.u1
in degree 10
-
y1.y24.u1
in degree 10
-
y12.y23.u1
in degree 10
-
y13.s
in degree 10
-
y13.y22.u1
in degree 10
-
y14.y2.u1
in degree 10
-
y15.u1
in degree 10
-
y16.y24
in degree 10
-
w1.r
in degree 11
-
x2.w1.t
in degree 11
-
y25.t
in degree 11
-
y12.y24.u1
in degree 11
-
y13.y23.u1
in degree 11
-
y14.s
in degree 11
-
y14.y22.u1
in degree 11
-
y15.y2.u1
in degree 11
-
y16.u1
in degree 11
-
x22.r
in degree 12
-
y26.t
in degree 12
-
y13.y24.u1
in degree 12
-
y14.y23.u1
in degree 12
-
y15.s
in degree 12
-
y15.y22.u1
in degree 12
-
y16.y2.u1
in degree 12
-
x2.w1.r
in degree 13
-
x22.w1.t
in degree 13
-
y14.y24.u1
in degree 13
-
y15.y23.u1
in degree 13
-
y16.y22.u1
in degree 13
-
y15.y24.u1
in degree 14
-
y16.y23.u1
in degree 14
-
x22.w1.r
in degree 15
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y2
in degree 1
-
y1
in degree 1
-
y22
in degree 2
-
y1.y2
in degree 2
-
y12
in degree 2
-
x1
in degree 2
-
w2
in degree 3
-
y2.x2
in degree 3
-
y23
in degree 3
-
y1.y22
in degree 3
-
y12.y2
in degree 3
-
y13
in degree 3
-
y1.x1
in degree 3
-
y22.x2
in degree 4
-
y24
in degree 4
-
y1.w1
in degree 4
-
y1.y23
in degree 4
-
y12.y22
in degree 4
-
y13.y2
in degree 4
-
y14
in degree 4
-
y12.x1
in degree 4
-
x12
in degree 4
-
u2
+ u1
+ x2.w1
+ x22.h
+ h5
in degree 5
-
y23.x2
in degree 5
-
y25
in degree 5
-
y1.y24
in degree 5
-
y12.w1
in degree 5
-
y12.y23
in degree 5
-
y13.y22
in degree 5
-
y14.y2
in degree 5
-
y15
in degree 5
-
y13.x1
in degree 5
-
y1.x12
in degree 5
-
y2.u1
in degree 6
-
y24.x2
in degree 6
-
y26
in degree 6
-
y1.u1
in degree 6
-
y12.y24
in degree 6
-
y13.w1
in degree 6
-
y13.y23
in degree 6
-
y14.y22
in degree 6
-
y15.y2
in degree 6
-
y16
in degree 6
-
y14.x1
in degree 6
-
y12.x12
in degree 6
-
s
+ x2.u1
+ x2.v2.h
+ x2.w1.h2
+ h7
in degree 7
-
y2.t
in degree 7
-
y22.u1
in degree 7
-
y25.x2
in degree 7
-
y1.y2.u1
in degree 7
-
y12.u1
in degree 7
-
y13.y24
in degree 7
-
y14.w1
in degree 7
-
y14.y23
in degree 7
-
y15.y22
in degree 7
-
y16.y2
in degree 7
-
y13.x12
in degree 7
-
y22.t
in degree 8
-
y23.u1
in degree 8
-
y26.x2
in degree 8
-
y1.s
in degree 8
-
y1.y22.u1
in degree 8
-
y12.y2.u1
in degree 8
-
y13.u1
in degree 8
-
y14.y24
in degree 8
-
y15.w1
in degree 8
-
y15.y23
in degree 8
-
y16.y22
in degree 8
-
y2.x2.t
in degree 9
-
y23.t
in degree 9
-
y24.u1
in degree 9
-
y1.y23.u1
in degree 9
-
y12.s
in degree 9
-
y12.y22.u1
in degree 9
-
y13.y2.u1
in degree 9
-
y14.u1
in degree 9
-
y15.y24
in degree 9
-
y16.y23
in degree 9
-
y24.t
in degree 10
-
y25.u1
in degree 10
-
y1.y24.u1
in degree 10
-
y12.y23.u1
in degree 10
-
y13.s
in degree 10
-
y13.y22.u1
in degree 10
-
y14.y2.u1
in degree 10
-
y15.u1
in degree 10
-
y16.y24
in degree 10
-
y25.t
in degree 11
-
y12.y24.u1
in degree 11
-
y13.y23.u1
in degree 11
-
y14.s
in degree 11
-
y14.y22.u1
in degree 11
-
y15.y2.u1
in degree 11
-
y16.u1
in degree 11
-
y26.t
in degree 12
-
y13.y24.u1
in degree 12
-
y14.y23.u1
in degree 12
-
y15.s
in degree 12
-
y15.y22.u1
in degree 12
-
y16.y2.u1
in degree 12
-
x22.w1.t
+ x22.r.h
+ w1.t.h4
+ r.h5
+ w1.u1.h5
+ x22.v2.h5
+ x2.v2.h7
+ u1.h8
+ x2.w1.h8
+ v2.h9
+ x22.h9
+ w1.h10
in degree 13
-
y14.y24.u1
in degree 13
-
y15.y23.u1
in degree 13
-
y16.y22.u1
in degree 13
-
y15.y24.u1
in degree 14
-
y16.y23.u1
in degree 14
A basis for AnnR/(h1, h2)(h3) is as follows.
-
x1
in degree 2
-
y1.x1
in degree 3
-
y12.x1
in degree 4
-
x12
in degree 4
-
y13.x1
in degree 5
-
y1.x12
in degree 5
-
y14.x1
in degree 6
-
y12.x12
in degree 6
-
y13.x12
in degree 7
Restriction to special subgroup number 1, which is 2gp1
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
0
- u2 restricts to
0
- t restricts to
0
- s restricts to
0
- r1 restricts to
0
- r2 restricts to
y8
Restriction to special subgroup number 2, which is 8gp5
- y1 restricts to
y2
- y2 restricts to
y3
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
0
- w2 restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
y1.y2.y33
+ y1.y22.y32
+ y12.y33
+ y12.y2.y32
+ y12.y22.y3
+ y14.y3
- u2 restricts to
0
- t restricts to
0
- s restricts to
y1.y2.y35
+ y1.y24.y32
+ y12.y35
+ y12.y22.y33
+ y12.y24.y3
+ y14.y33
+ y14.y2.y32
+ y14.y22.y3
- r1 restricts to
y1.y23.y34
+ y1.y24.y33
+ y12.y22.y34
+ y12.y23.y33
+ y12.y24.y32
+ y14.y22.y32
- r2 restricts to
y1.y23.y34
+ y1.y24.y33
+ y12.y23.y33
+ y14.y34
+ y14.y24
+ y18
Restriction to special subgroup number 3, which is 8gp5
- y1 restricts to
0
- y2 restricts to
y2
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
y32
+ y2.y3
- w1 restricts to
0
- w2 restricts to
0
- v1 restricts to
0
- v2 restricts to
0
- u1 restricts to
y1.y22.y32
+ y1.y23.y3
+ y12.y2.y32
+ y12.y22.y3
+ y12.y23
+ y14.y2
- u2 restricts to
0
- t restricts to
y1.y2.y34
+ y1.y23.y32
+ y12.y34
+ y12.y23.y3
+ y14.y32
+ y14.y2.y3
- s restricts to
y1.y24.y32
+ y1.y25.y3
+ y12.y23.y32
+ y12.y24.y3
+ y12.y25
+ y14.y23
- r1 restricts to
y1.y23.y34
+ y1.y25.y32
+ y12.y22.y34
+ y12.y25.y3
+ y14.y22.y32
+ y14.y23.y3
- r2 restricts to
y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y22.y32
+ y14.y24
+ y18
Restriction to special subgroup number 4, which is 8gp5
- y1 restricts to
y3
- y2 restricts to
y3
- y3 restricts to
0
- x1 restricts to
0
- x2 restricts to
0
- w1 restricts to
y2.y32
+ y22.y3
- w2 restricts to
y2.y32
+ y22.y3
- v1 restricts to
y22.y32
+ y24
- v2 restricts to
0
- u1 restricts to
y2.y34
+ y24.y3
+ y1.y2.y33
+ y1.y22.y32
+ y12.y33
+ y12.y2.y32
+ y12.y22.y3
+ y14.y3
- u2 restricts to
y2.y34
+ y22.y33
- t restricts to
y2.y35
+ y22.y34
- s restricts to
y2.y36
+ y22.y35
+ y1.y2.y35
+ y1.y24.y32
+ y12.y35
+ y12.y22.y33
+ y12.y24.y3
+ y14.y33
+ y14.y2.y32
+ y14.y22.y3
- r1 restricts to
y24.y34
+ y28
+ y1.y2.y36
+ y1.y24.y33
+ y12.y36
+ y12.y22.y34
+ y12.y24.y32
+ y14.y34
+ y14.y2.y33
+ y14.y22.y32
- r2 restricts to
y2.y37
+ y23.y35
+ y25.y33
+ y26.y32
+ y1.y2.y36
+ y1.y24.y33
+ y12.y36
+ y14.y2.y33
+ y14.y24
+ y18
Restriction to special subgroup number 5, which is 16gp14
- y1 restricts to
0
- y2 restricts to
0
- y3 restricts to
y2
- x1 restricts to
0
- x2 restricts to
y32
+ y2.y3
- w1 restricts to
y3.y42
+ y32.y4
+ y2.y42
+ y22.y4
+ y1.y22
+ y12.y2
- w2 restricts to
0
- v1 restricts to
y44
+ y32.y42
+ y2.y3.y42
+ y2.y32.y4
+ y22.y42
+ y22.y3.y4
- v2 restricts to
y32.y42
+ y33.y4
+ y2.y3.y42
+ y22.y42
+ y22.y3.y4
+ y23.y4
+ y1.y2.y32
+ y1.y22.y3
- u1 restricts to
y3.y44
+ y33.y42
+ y2.y44
+ y2.y33.y4
+ y22.y3.y42
+ y22.y32.y4
+ y23.y3.y4
+ y24.y4
+ y1.y22.y32
+ y1.y23.y3
+ y1.y24
+ y12.y2.y32
+ y12.y22.y3
+ y14.y2
- u2 restricts to
y3.y44
+ y34.y4
+ y2.y32.y42
+ y22.y3.y42
+ y22.y32.y4
+ y23.y42
+ y23.y3.y4
+ y24.y4
+ y1.y24
+ y14.y2
- t restricts to
y2.y3.y44
+ y2.y32.y43
+ y22.y44
+ y22.y3.y43
+ y22.y32.y42
+ y22.y33.y4
+ y23.y32.y4
+ y25.y4
+ y1.y33.y42
+ y1.y34.y4
+ y1.y2.y32.y42
+ y1.y22.y32.y4
+ y1.y23.y42
+ y1.y23.y32
+ y1.y24.y4
+ y1.y24.y3
+ y12.y32.y42
+ y12.y33.y4
+ y12.y34
+ y12.y2.y3.y42
+ y12.y22.y42
+ y12.y22.y3.y4
+ y12.y22.y32
+ y12.y23.y4
+ y13.y2.y32
+ y13.y22.y3
+ y14.y32
+ y14.y2.y3
- s restricts to
y33.y44
+ y35.y42
+ y2.y32.y44
+ y2.y34.y42
+ y22.y34.y4
+ y23.y32.y42
+ y24.y3.y42
+ y25.y3.y4
+ y12.y2.y34
+ y12.y24.y3
+ y14.y2.y32
+ y14.y22.y3
- r1 restricts to
y48
+ y37.y4
+ y2.y3.y46
+ y2.y35.y42
+ y2.y36.y4
+ y22.y46
+ y22.y3.y45
+ y22.y32.y44
+ y22.y35.y4
+ y23.y45
+ y23.y3.y44
+ y23.y32.y43
+ y23.y33.y42
+ y23.y34.y4
+ y24.y32.y42
+ y25.y43
+ y25.y3.y42
+ y26.y42
+ y26.y3.y4
+ y27.y4
+ y1.y33.y44
+ y1.y35.y42
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y2.y36
+ y1.y22.y33.y42
+ y1.y22.y35
+ y1.y23.y34
+ y1.y24.y3.y42
+ y1.y24.y32.y4
+ y1.y24.y33
+ y1.y25.y42
+ y1.y25.y3.y4
+ y1.y26.y4
+ y1.y27
+ y12.y32.y44
+ y12.y35.y4
+ y12.y2.y3.y44
+ y12.y22.y33.y4
+ y12.y22.y34
+ y12.y23.y32.y4
+ y12.y24.y3.y4
+ y12.y25.y3
+ y12.y26
+ y13.y2.y34
+ y13.y23.y32
+ y14.y32.y42
+ y14.y33.y4
+ y14.y2.y3.y42
+ y14.y22.y42
+ y14.y22.y3.y4
+ y14.y23.y4
+ y15.y2.y32
+ y15.y22.y3
- r2 restricts to
y36.y42
+ y37.y4
+ y2.y3.y46
+ y2.y33.y44
+ y2.y35.y42
+ y22.y3.y45
+ y22.y35.y4
+ y23.y3.y44
+ y23.y33.y42
+ y23.y34.y4
+ y24.y44
+ y24.y3.y43
+ y24.y33.y4
+ y26.y42
+ y1.y33.y44
+ y1.y35.y42
+ y1.y2.y32.y44
+ y1.y2.y34.y42
+ y1.y2.y36
+ y1.y22.y3.y44
+ y1.y22.y35
+ y1.y24.y3.y42
+ y1.y24.y33
+ y1.y26.y3
+ y12.y34.y42
+ y12.y35.y4
+ y12.y2.y3.y44
+ y12.y22.y44
+ y12.y22.y32.y42
+ y12.y24.y42
+ y12.y26
+ y13.y2.y34
+ y13.y24.y3
+ y13.y25
+ y14.y44
+ y14.y33.y4
+ y14.y34
+ y14.y2.y3.y42
+ y14.y22.y42
+ y14.y23.y3
+ y14.y24
+ y15.y2.y32
+ y15.y22.y3
+ y15.y23
+ y16.y22
+ y18
(1 + 2t + 3t2
+ 4t3 + 4t4 + 4t5
+ 3t6 + 2t7 + 2t8
+ t9 - t14 - t15) /
(1 - t) (1 - t4) (1 - t6) (1 - t8)
Back to the groups of order 256