Small group number 38 of order 32

G is the group 32gp38

The Hall-Senior number of this group is 17.

G has 3 minimal generators, rank 2 and exponent 8. The centre has rank 1.

There are 3 conjugacy classes of maximal elementary abelian subgroups. Their ranks are: 2, 2, 2.

This cohomology ring calculation is complete.

Ring structure | Completion information | Koszul information | Restriction information | Poincaré series


Ring structure

The cohomology ring has 4 generators:

There are 2 minimal relations:

This minimal generating set constitutes a Gröbner basis for the relations ideal.


Completion information

This cohomology ring was obtained from a calculation out to degree 8. The cohomology ring approximation is stable from degree 4 onwards, and Benson's tests detect stability from degree 5 onwards.

This cohomology ring has dimension 2 and depth 2. Here is a homogeneous system of parameters:

The first 2 terms h1, h2 form a regular sequence of maximum length.

The first term h1 forms a complete Duflot regular sequence. That is, its restriction to the greatest central elementary abelian subgroup forms a regular sequence of maximal length.

Data for Benson's test:


Koszul information

A basis for R/(h1, h2) is as follows.


Restriction information