Small group number 219 of order 64
G is the group 64gp219
The Hall-Senior number of this group is 175.
G has 4 minimal generators, rank 4 and exponent 4.
The centre has rank 2.
There are 3 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 10 generators:
- y1 in degree 1
- y2 in degree 1
- y3 in degree 1
- y4 in degree 1
- w1 in degree 3
- w2 in degree 3
- v1 in degree 4
- v2 in degree 4, a regular element
- v3 in degree 4, a regular element
- t in degree 6
There are 21 minimal relations:
- y3.y4 =
y1.y4
+ y1.y2
- y2.y4 =
y12
- y1.y2.y3 =
y12.y3
- y12.y4 =
y12.y2
- y4.w1 =
y1.w2
+ y13.y2
- y3.w2 =
y2.w2
+ y2.w1
+ y1.w2
+ y1.w1
+ y13.y2
+ y14
- y4.v1 =
y42.w2
+ y12.w1
+ y14.y2
- y1.v1 =
y1.y4.w2
+ y1.y3.w1
+ y12.w2
+ y14.y2
+ y15
- y1.y2.w1 =
y12.w2
+ y14.y2
- w22 =
y43.w2
+ y22.y3.w1
+ y23.w2
+ y42.v3
+ y42.v2
+ y22.v3
+ y12.v3
- w1.w2 =
y2.y32.w1
+ y22.y3.w1
+ y23.w1
+ y1.y42.w2
+ y1.y32.w1
+ y13.w2
+ y15.y2
+ y2.y3.v3
+ y22.v3
+ y1.y4.v3
+ y1.y4.v2
+ y1.y3.v3
+ y12.v3
- w12 =
y33.w1
+ y23.w1
+ y13.w2
+ y15.y2
+ y16
+ y32.v3
+ y22.v3
+ y12.v2
- w2.v1 =
y44.w2
+ y2.t
+ y2.y32.v1
+ y2.y33.w1
+ y22.y3.v1
+ y22.y32.w1
+ y23.v1
+ y23.y3.w1
+ y1.y33.w1
+ y16.y2
+ y17
+ y43.v3
+ y43.v2
+ y2.y32.v2
+ y22.y3.v3
+ y22.y3.v2
+ y1.y32.v3
+ y12.y3.v3
+ y13.v2
- w1.v1 =
y3.t
+ y33.v1
+ y34.w1
+ y2.t
+ y23.v1
+ y23.y3.w1
+ y14.w1
+ y17
+ y33.v2
+ y2.y32.v3
+ y22.y3.v3
+ y22.y3.v2
+ y12.y3.v3
+ y12.y2.v3
+ y12.y2.v2
+ y13.v2
- y4.t =
y44.w2
+ y1.y43.w2
+ y1.y46
+ y14.w1
+ y43.v3
+ y43.v2
+ y12.y2.v3
+ y12.y2.v2
+ y13.v3
- y1.t =
y1.y43.w2
+ y1.y33.w1
+ y1.y42.v3
+ y1.y42.v2
+ y1.y32.v3
+ y1.y32.v2
+ y12.y3.v2
+ y12.y2.v3
+ y13.v3
+ y13.v2
- v12 =
y45.w2
+ y35.w1
+ y22.y32.v1
+ y22.y33.w1
+ y23.y3.v1
+ y24.y3.w1
+ y25.w1
+ y15.w2
+ y15.w1
+ y17.y2
+ y18
+ y44.v3
+ y44.v2
+ y34.v3
+ y24.v2
+ y14.v3
- w2.t =
y46.w2
+ y2.y35.w1
+ y23.y33.w1
+ y25.y3.w1
+ y1.y35.w1
+ y16.w2
+ y42.w2.v3
+ y42.w2.v2
+ y45.v3
+ y45.v2
+ y2.v1.v3
+ y2.y3.w1.v2
+ y2.y34.v3
+ y22.w2.v3
+ y22.w1.v3
+ y24.y3.v3
+ y1.y44.v3
+ y1.y44.v2
+ y1.y3.w1.v3
+ y1.y3.w1.v2
+ y1.y34.v3
+ y12.w2.v3
+ y12.w2.v2
+ y12.w1.v3
+ y14.y2.v3
+ y15.v2
- w1.t =
y36.w1
+ y2.y35.w1
+ y22.y34.w1
+ y23.y33.w1
+ y24.y32.w1
+ y25.y3.w1
+ y1.y45.w2
+ y3.v1.v3
+ y32.w1.v2
+ y35.v3
+ y2.v1.v3
+ y2.y3.w1.v3
+ y2.y3.w1.v2
+ y2.y34.v3
+ y23.y32.v3
+ y24.y3.v3
+ y1.y4.w2.v2
+ y1.y44.v3
+ y1.y44.v2
+ y12.w1.v3
+ y12.w1.v2
+ y15.v2
- v1.t =
y47.w2
+ y34.t
+ y36.v1
+ y37.w1
+ y2.y35.v1
+ y2.y36.w1
+ y22.y32.t
+ y22.y34.v1
+ y23.y33.v1
+ y23.y34.w1
+ y24.y32.v1
+ y24.y33.w1
+ y25.y3.v1
+ y17.w2
+ y43.w2.v3
+ y43.w2.v2
+ y46.v3
+ y46.v2
+ y32.v1.v2
+ y33.w1.v3
+ y36.v2
+ y2.y3.v1.v3
+ y2.y3.v1.v2
+ y2.y32.w1.v3
+ y2.y35.v3
+ y2.y35.v2
+ y22.y3.w1.v3
+ y22.y34.v2
+ y23.w2.v3
+ y23.w2.v2
+ y23.w1.v3
+ y23.y33.v2
+ y24.y32.v3
+ y24.y32.v2
+ y25.y3.v2
+ y26.v3
+ y26.v2
+ y1.y45.v3
+ y1.y45.v2
+ y13.w1.v3
+ y16.v3
+ y16.v2
- t2 =
y49.w2
+ y39.w1
+ y22.y34.t
+ y25.y3.t
+ y26.y33.w1
+ y19.w1
+ y112
+ y48.v3
+ y48.v2
+ y38.v3
+ y22.y32.v1.v3
+ y22.y36.v2
+ y23.y3.v1.v3
+ y23.y32.w1.v3
+ y23.y35.v2
+ y24.y3.w1.v2
+ y24.y34.v2
+ y25.w2.v3
+ y25.w2.v2
+ y25.y33.v2
+ y27.y3.v3
+ y28.v3
+ y28.v2
+ y15.w1.v3
+ y15.w1.v2
+ y44.v32
+ y44.v22
+ y34.v32
+ y34.v22
+ y22.y32.v32
+ y22.y32.v22
+ y24.v2.v3
+ y14.v2.v3
+ y14.v22
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.y22 =
y12.y3
+ y13
- y12.y32 =
0
- y13.y3 =
0
- y1.y2.w2 =
y12.w1
+ y15
- y12.y3.w1 =
0
This cohomology ring was obtained from a calculation
out to degree 12. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 12
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
v2
in degree 4
- h2 =
v3
in degree 4
- h3 =
y42
+ y32
+ y2.y3
+ y22
+ y1.y4
in degree 2
- h4 =
y2
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
2 terms h1, h2 form
a complete Duflot regular sequence.
That is, their restrictions to the greatest central elementary abelian
subgroup form a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 3, 6, 7.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y4
in degree 1
-
y3
in degree 1
-
y1
in degree 1
-
y32
in degree 2
-
y1.y4
in degree 2
-
y1.y3
in degree 2
-
w2
in degree 3
-
w1
in degree 3
-
y1.y32
in degree 3
-
v
in degree 4
-
y4.w2
in degree 4
-
y3.w1
in degree 4
-
y1.w2
in degree 4
-
y1.w1
in degree 4
-
y3.v
in degree 5
-
y1.y4.w2
in degree 5
-
y1.y3.w1
in degree 5
-
t
in degree 6
-
y3.t
in degree 7
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y32
+ y1.y3
+ y4.h
+ y3.h
+ y1.h
+ h2
in degree 2
-
y1.y4
+ y1.y3
+ y1.h
in degree 2
-
y1.y32
+ y12.y3
+ y1.y4.h
+ y1.y3.h
+ y12.h
+ y1.h2
in degree 3
-
y1.y3.h
in degree 3
-
y4.h2
in degree 3
-
y1.h2
in degree 3
-
y4.w2
+ y1.w1
in degree 4
-
y1.y4.w2
+ y1.y3.w2
+ y1.w2.h
in degree 5
-
y1.y3.w1
in degree 5
-
y3.w1.h
+ y1.w2.h
+ y1.w1.h
+ w2.h2
in degree 5
-
y1.w2.h2
in degree 6
-
y1.w1.h2
in degree 6
A basis for AnnR/(h1, h2)(h3) is as follows.