Small group number 232 of order 64
G is the group 64gp232
The Hall-Senior number of this group is 163.
G has 4 minimal generators, rank 4 and exponent 4.
The centre has rank 2.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 4.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 10 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1
- y3 in degree 1
- y4 in degree 1
- w in degree 3
- v1 in degree 4
- v2 in degree 4
- v3 in degree 4, a regular element
- v4 in degree 4, a regular element
- t in degree 6
There are 22 minimal relations:
- y42 =
y2.y4
+ y1.y2
- y3.y4 =
y1.y4
+ y12
- y12.y4 =
y12.y3
+ y13
- y12.y2 =
0
- y4.v2 =
y1.y4.w
+ y1.y2.w
- y4.v1 =
y2.y4.w
+ y1.y2.w
+ y1.y23.y4
- y3.v1 =
y2.v2
+ y2.y4.w
+ y2.y3.w
+ y22.w
+ y1.y2.w
- y1.v2 =
y1.y4.w
+ y1.y2.w
- y1.v1 =
y1.y4.w
- y12.w =
0
- w2 =
y32.v2
+ y2.y3.v2
+ y23.w
+ y25.y4
+ y1.y2.y4.w
+ y1.y22.w
+ y1.y24.y4
+ y1.y25
+ y32.v4
+ y2.y4.v4
+ y22.v3
+ y1.y2.v4
+ y12.v4
- w.v2 =
y3.t
+ y34.w
+ y23.v2
+ y1.y23.w
+ y33.v4
+ y2.y32.v3
+ y22.y4.v3
+ y22.y3.v4
+ y22.y3.v3
+ y23.v3
+ y1.y32.v4
+ y1.y32.v3
+ y1.y22.v3
+ y12.y3.v4
+ y12.y3.v3
- w.v1 =
y2.t
+ y2.y32.v2
+ y2.y33.w
+ y23.v2
+ y23.v1
+ y23.y4.w
+ y26.y4
+ y1.y26
+ y22.y4.v4
+ y22.y3.v4
+ y22.y3.v3
+ y23.v4
+ y1.y22.v4
+ y12.y3.v3
+ y13.v4
+ y13.v3
- y4.t =
y23.y4.w
+ y1.y25.y4
+ y22.y4.v4
+ y22.y4.v3
+ y1.y2.y4.v3
+ y1.y22.v3
+ y12.y3.v4
+ y13.v4
+ y13.v3
- y1.t =
y1.y33.w
+ y1.y23.w
+ y1.y32.v4
+ y1.y2.y4.v3
+ y1.y22.v4
+ y13.v4
- v22 =
y22.y32.v2
+ y22.y33.w
+ y23.y3.v2
+ y23.y32.w
+ y24.y4.w
+ y25.w
+ y1.y23.y4.w
+ y22.y32.v4
+ y22.y32.v3
+ y23.y4.v3
+ y24.v3
+ y1.y23.v3
- v1.v2 =
y2.y3.t
+ y2.y34.w
+ y22.t
+ y22.y33.w
+ y23.y3.v2
+ y23.y32.w
+ y24.v1
+ y24.y4.w
+ y24.y3.w
+ y25.w
+ y2.y33.v4
+ y22.y32.v4
+ y22.y32.v3
+ y23.y4.v3
+ y23.y3.v3
+ y24.v4
+ y1.y22.y4.v4
+ y1.y23.v3
- v12 =
y22.y32.v2
+ y23.y3.v2
+ y24.y4.w
+ y24.y3.w
+ y27.y4
+ y1.y23.y4.w
+ y1.y24.w
+ y1.y26.y4
+ y1.y27
+ y22.y32.v4
+ y23.y4.v4
+ y23.y4.v3
+ y1.y23.v4
+ y1.y23.v3
- w.t =
y35.v2
+ y2.y34.v2
+ y22.y33.v2
+ y22.y34.w
+ y23.y33.w
+ y24.y3.v2
+ y24.y32.w
+ y25.y3.w
+ y26.w
+ y28.y4
+ y1.y27.y4
+ y1.y28
+ y3.v2.v4
+ y32.w.v4
+ y35.v4
+ y2.v1.v3
+ y2.y3.w.v3
+ y22.w.v4
+ y22.y33.v4
+ y23.y32.v4
+ y23.y32.v3
+ y24.y4.v4
+ y24.y3.v3
+ y25.v3
+ y1.y3.w.v4
+ y1.y3.w.v3
+ y1.y23.y4.v3
+ y1.y24.v4
+ y1.y24.v3
- v2.t =
y34.t
+ y37.w
+ y22.y32.t
+ y22.y34.v2
+ y22.y35.w
+ y23.y3.t
+ y23.y33.v2
+ y23.y34.w
+ y24.y32.v2
+ y25.y3.v2
+ y26.v2
+ y1.y25.y4.w
+ y32.v2.v4
+ y36.v4
+ y2.y3.v2.v3
+ y2.y35.v3
+ y22.v2.v4
+ y22.v2.v3
+ y22.v1.v3
+ y22.y3.w.v4
+ y22.y3.w.v3
+ y22.y34.v4
+ y22.y34.v3
+ y23.w.v3
+ y24.y32.v4
+ y24.y32.v3
+ y25.y4.v3
+ y25.y3.v4
+ y26.v3
+ y1.y35.v4
+ y1.y35.v3
+ y1.y2.y4.w.v4
+ y1.y24.y4.v3
- v1.t =
y2.y33.t
+ y2.y35.v2
+ y2.y36.w
+ y23.y3.t
+ y23.y33.v2
+ y24.t
+ y24.y33.w
+ y26.v1
+ y27.w
+ y29.y4
+ y1.y26.w
+ y1.y29
+ y2.y32.w.v4
+ y22.v2.v4
+ y22.v2.v3
+ y22.v1.v4
+ y22.y4.w.v4
+ y22.y3.w.v4
+ y22.y3.w.v3
+ y22.y34.v4
+ y22.y34.v3
+ y23.w.v4
+ y23.w.v3
+ y23.y33.v3
+ y24.y32.v3
+ y25.y4.v4
+ y25.y3.v3
+ y26.v4
+ y1.y2.y4.w.v4
+ y1.y22.w.v4
+ y1.y25.v4
- t2 =
y38.v2
+ y2.y37.v2
+ y22.y34.t
+ y22.y37.w
+ y23.y36.w
+ y24.y32.t
+ y24.y34.v2
+ y25.y33.v2
+ y25.y34.w
+ y26.y32.v2
+ y26.y33.w
+ y27.y3.v2
+ y29.w
+ y211.y4
+ y1.y27.y4.w
+ y1.y28.w
+ y1.y210.y4
+ y1.y211
+ y38.v4
+ y22.y32.v2.v3
+ y22.y33.w.v4
+ y22.y36.v4
+ y22.y36.v3
+ y23.y3.v2.v3
+ y23.y32.w.v4
+ y23.y35.v3
+ y24.y3.w.v3
+ y24.y34.v4
+ y25.y33.v4
+ y26.y32.v4
+ y26.y32.v3
+ y27.y4.v4
+ y28.v3
+ y1.y23.y4.w.v3
+ y1.y27.v4
+ y34.v42
+ y22.y32.v42
+ y22.y32.v3.v4
+ y22.y32.v32
+ y23.y4.v32
+ y24.v42
+ y1.y23.v32
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y1.y2.y3 =
y12.y4
- y12.y32 =
0
- y13.y3 =
0
- y14 =
0
This cohomology ring was obtained from a calculation
out to degree 12. The cohomology ring approximation
is stable from degree 12 onwards, and
Benson's tests detect stability from degree 12
onwards.
This cohomology ring has dimension 4 and depth 2.
Here is a homogeneous system of parameters:
- h1 =
v3
in degree 4
- h2 =
v4
in degree 4
- h3 =
y32
+ y2.y3
+ y22
in degree 2
- h4 =
y2
in degree 1
The first
2 terms h1, h2 form
a regular sequence of maximum length.
The first
2 terms h1, h2 form
a complete Duflot regular sequence.
That is, their restrictions to the greatest central elementary abelian
subgroup form a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, -1, 3, 6, 7.
-
Filter degree type:
-1, -2, -3, -4, -4.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3, h4) is as follows.
-
1
in degree 0
-
y4
in degree 1
-
y3
in degree 1
-
y1
in degree 1
-
y1.y4
in degree 2
-
y1.y3
in degree 2
-
y12
in degree 2
-
w
in degree 3
-
y13
in degree 3
-
v2
in degree 4
-
v1
in degree 4
-
y4.w
in degree 4
-
y3.w
in degree 4
-
y1.w
in degree 4
-
y3.v2
in degree 5
-
y1.y4.w
in degree 5
-
y1.y3.w
in degree 5
-
t
in degree 6
-
y3.t
in degree 7
A basis for AnnR/(h1, h2, h3)(h4) is as follows.
-
y1.y4
+ y4.h
in degree 2
-
y12
in degree 2
-
y13
in degree 3
-
y1.y3.h
in degree 3
-
y4.h2
in degree 3
-
y1.h2
in degree 3
-
y3.v2
+ v2.h
+ v1.h
+ y3.w.h
+ y1.w.h
in degree 5
-
y1.y4.w
+ y4.w.h
in degree 5
-
y1.y3.w
in degree 5
-
y4.w.h2
in degree 6
-
y1.w.h2
in degree 6
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y12
in degree 2
-
y12.y3
in degree 3
-
y13
in degree 3