Small group number 33 of order 64
G is the group 64gp33
The Hall-Senior number of this group is 251.
G has 2 minimal generators, rank 3 and exponent 8.
The centre has rank 1.
There are 2 conjugacy classes of maximal
elementary abelian subgroups. Their ranks are:
3, 3.
This cohomology ring calculation is complete.
Ring structure
| Completion information
| Koszul information
| Restriction information
| Poincaré series
The cohomology ring has 19 generators:
- y1 in degree 1, a nilpotent element
- y2 in degree 1, a nilpotent element
- x1 in degree 2
- x2 in degree 2
- w1 in degree 3
- w2 in degree 3
- w3 in degree 3
- v1 in degree 4
- v2 in degree 4
- u1 in degree 5, a nilpotent element
- u2 in degree 5
- u3 in degree 5
- t1 in degree 6
- t2 in degree 6
- s1 in degree 7
- s2 in degree 7
- r1 in degree 8
- r2 in degree 8, a regular element
- q in degree 9
There are 134 minimal relations:
- y1.y2 =
0
- y12 =
0
- y2.x2 =
0
- y1.x1 =
0
- y23 =
0
- x1.x2 =
0
- y2.w3 =
y2.w1
- y1.w3 =
0
- y1.w2 =
y22.x1
- y1.w1 =
0
- x2.w3 =
0
- x2.w2 =
x2.w1
- x1.w3 =
x1.w1
+ y2.x12
- y2.v2 =
0
- y1.v2 =
0
- y1.v1 =
0
- y22.w2 =
0
- y22.w1 =
0
- w32 =
x13
+ y2.x1.w1
+ y22.v1
- w2.w3 =
w1.w2
+ x2.v1
+ y2.x1.w2
+ y22.v1
- w22 =
x2.v1
+ x1.v1
+ y2.u2
- w1.w3 =
x13
+ y22.v1
- w12 =
x2.v1
+ x13
+ y2.x1.w1
+ y22.v1
- x1.v2 =
0
- y2.u3 =
y22.v1
- y1.u3 =
0
- y1.u2 =
0
- y2.u1 =
y22.v1
- y1.u1 =
0
- w3.v2 =
0
- w3.v1 =
x1.u2
+ y2.t1
+ y2.w1.w2
+ y2.x1.v1
- w2.v2 =
x2.u3
+ y1.t2
- w1.v2 =
x2.u3
+ y1.t2
- x2.u2 =
0
- x1.u3 =
y2.x1.v1
+ y2.x13
- x2.u1 =
y1.t2
- x1.u1 =
y2.w1.w2
+ y2.x1.v1
- y2.t2 =
y2.w1.w2
+ y2.x13
- y1.t1 =
0
- y22.u2 =
0
- v22 =
x22.v1
- v1.v2 =
x2.t1
+ x22.v2
- w3.u3 =
y2.x1.u2
+ y2.x12.w1
+ y22.t1
- w3.u2 =
x12.v1
+ y2.s2
+ y2.w2.v1
+ y2.x12.w2
+ y22.t1
- w2.u3 =
x2.t1
+ x22.v2
+ y2.w2.v1
+ y2.x12.w2
+ y22.t1
- w1.u3 =
x2.t1
+ x22.v2
+ y2.x1.u2
+ y2.x12.w1
+ y22.t1
- w1.u2 =
x12.v1
+ y2.s2
+ y2.w2.v1
+ y2.x1.u2
+ y2.x12.w2
- x1.t2 =
x1.w1.w2
+ x14
+ y2.x1.u2
+ y2.x12.w2
- w3.u1 =
y2.x1.u2
+ y2.x12.w2
+ y22.t1
- w2.u1 =
y2.w2.v1
+ y2.x1.u2
- w1.u1 =
y2.x1.u2
+ y2.x12.w2
+ y22.t1
- y2.s1 =
y2.x1.u2
+ y2.x12.w1
- y1.s2 =
0
- y1.s1 =
0
- v2.u3 =
x2.w1.v1
- v2.u2 =
0
- v1.u3 =
w1.t1
+ x22.u3
+ x1.s2
+ x1.w2.v1
+ y2.x1.w1.w2
+ y2.x12.v1
+ y2.x14
+ y1.x2.t2
- w3.t2 =
x13.w2
+ x13.w1
+ y2.x1.w1.w2
+ y2.x12.v1
+ y2.x14
- w3.t1 =
x1.s2
+ x1.w2.v1
+ y2.v12
+ y2.x1.t1
+ y2.x1.w1.w2
+ y2.x14
- w2.t2 =
x2.s1
+ x22.u3
+ x12.u2
+ x13.w2
+ y2.w2.u2
+ y2.x1.t1
+ y2.x1.w1.w2
+ y1.x2.t2
- w1.t2 =
x2.s1
+ x22.u3
+ x13.w2
+ x13.w1
+ y2.x12.v1
+ y1.x2.t2
- x2.s2 =
x2.w1.v1
+ x23.w1
- x1.s1 =
x12.u2
+ x13.w1
+ y2.w2.u2
+ y2.x1.t1
+ y2.x14
- v2.u1 =
0
- v1.u1 =
y2.v12
+ y2.w2.u2
- y2.r1 =
y2.w2.u2
+ y2.x1.w1.w2
+ y2.x14
- y1.r1 =
0
- y22.s2 =
0
- u32 =
x2.v12
+ y22.v12
- u2.u3 =
y2.v1.u2
+ y2.x12.u2
+ y22.v12
- u22 =
x1.v12
+ y2.v1.u2
+ y22.r2
- v2.t2 =
x2.r1
+ x23.v2
- v2.t1 =
x2.v12
+ x23.v1
- v1.t2 =
w1.s1
+ x22.t1
+ x23.v2
+ x1.w2.u2
+ x15
+ y2.v1.u2
+ y2.w2.t1
+ y2.x13.w2
- w3.s2 =
x1.w2.u2
+ x12.t1
+ y2.v1.u2
+ y2.w2.t1
+ y2.x1.w2.v1
+ y2.x12.u2
+ y2.x13.w2
+ y2.x13.w1
+ y22.v12
- w3.s1 =
x13.v1
+ x15
+ y2.x1.w2.v1
+ y2.x13.w2
+ y2.x13.w1
- w2.s1 =
w1.s1
+ x1.w2.u2
+ x12.w1.w2
+ x13.v1
+ x15
+ y2.v1.u2
+ y2.w2.t1
+ y2.x1.w2.v1
+ y2.x12.u2
- w1.s2 =
x2.v12
+ x23.v1
+ x1.w2.u2
+ x12.t1
+ y2.v1.u2
+ y2.w2.t1
+ y2.x1.s2
+ y2.x1.w2.v1
+ y2.x12.u2
+ y2.x13.w2
+ y2.x13.w1
+ y22.v12
- x1.r1 =
x1.w2.u2
+ x12.w1.w2
+ x15
+ y2.x1.s2
+ y2.x13.w2
+ y2.x13.w1
- u1.u3 =
y22.v12
- u1.u2 =
y2.v1.u2
+ y2.x1.w2.v1
- y2.q =
y2.v1.u2
+ y2.x13.w2
- y1.q =
0
- u12 =
y22.v12
- u3.t2 =
x2.q
+ x22.w1.v1
+ x23.u3
+ y2.x1.w2.u2
+ y2.x12.w1.w2
+ y2.x13.v1
+ y2.x15
+ y1.x2.r2
- u3.t1 =
w1.v12
+ x22.w1.v1
+ x1.v1.u2
+ y2.x1.w2.u2
+ y2.x12.t1
- u2.t2 =
x12.w2.v1
+ x13.u2
+ y2.w2.s2
+ y2.x13.v1
- u2.t1 =
v1.s2
+ w2.v12
+ x22.w1.v1
+ y2.v1.t1
+ y2.w2.s2
+ y2.x1.w2.u2
+ y2.x12.t1
+ y2.x12.w1.w2
+ y2.x15
+ y2.x1.r2
- v2.s2 =
x2.w1.t1
- v2.s1 =
x2.q
+ x23.u3
- w3.r1 =
x12.w2.v1
+ x14.w2
+ x14.w1
+ y2.w2.s2
+ y2.x1.v12
+ y2.x1.w2.u2
+ y2.x12.t1
+ y2.x12.w1.w2
+ y2.x13.v1
- w2.r1 =
x2.q
+ x22.w1.v1
+ x1.v1.u2
+ x13.u2
+ x14.w2
+ y2.w2.s2
+ y2.x1.v12
+ y2.x12.t1
+ y1.x22.t2
- w1.r1 =
x2.q
+ x22.w1.v1
+ x12.w2.v1
+ x14.w2
+ x14.w1
+ y2.w2.s2
+ y2.x1.v12
+ y2.x12.t1
+ y2.x13.v1
+ y2.x15
+ y1.x22.t2
- x1.q =
x1.v1.u2
+ x14.w2
+ y2.w2.s2
+ y2.x1.w2.u2
+ y2.x12.t1
+ y2.x12.w1.w2
+ y2.x15
- u1.t2 =
y2.x1.w2.u2
+ y2.x12.w1.w2
+ y1.x2.r2
- u1.t1 =
y2.v1.t1
+ y2.w2.s2
+ y2.x1.v12
- t22 =
x22.r1
+ x24.v2
+ x24.v1
+ x14.v1
+ x16
+ x22.r2
- t1.t2 =
w1.q
+ x22.r1
+ x22.v12
+ x23.t1
+ x1.w2.s2
+ x13.t1
+ x13.w1.w2
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x12.s2
+ y2.x12.w2.v1
+ y2.x13.u2
+ y2.x14.w1
+ y22.v1.t1
+ y22.x1.r2
- t12 =
v13
+ x24.v1
+ x1.v1.t1
+ x12.v12
+ x13.t1
+ x13.w1.w2
+ x14.v1
+ x16
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s2
+ y2.x12.w2.v1
+ y2.x13.u2
+ y2.x14.w2
+ y2.x14.w1
+ x12.r2
- u3.s2 =
x2.v1.t1
+ y2.v1.s2
+ y2.x12.s2
- u3.s1 =
w1.q
+ x23.t1
+ x24.v2
+ x12.v12
+ x13.w1.w2
+ y2.v1.s2
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s2
+ y2.x12.w2.v1
+ y2.x14.w2
- u2.s2 =
w2.v1.u2
+ x1.v1.t1
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s2
+ y2.x14.w2
+ y2.x14.w1
+ y2.w1.r2
+ y22.x1.r2
- u2.s1 =
x12.v12
+ x14.v1
+ y2.v1.s2
+ y2.x1.v1.u2
+ y2.x12.s2
+ y2.x12.w2.v1
+ y2.x14.w2
+ y22.v1.t1
+ y22.x1.r2
- v2.r1 =
x2.w1.s1
+ x23.t1
+ x24.v2
+ x24.v1
- v1.r1 =
w2.v1.u2
+ w1.q
+ x22.v12
+ x12.v12
+ x12.w2.u2
+ x13.w1.w2
+ x14.v1
+ y2.w2.v12
+ y2.x12.s2
+ y2.x14.w2
+ y2.x14.w1
+ y22.v1.t1
- w3.q =
x12.v12
+ x13.w1.w2
+ y2.v1.s2
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x1.w2.t1
+ y2.x12.s2
+ y2.x12.w2.v1
+ y2.x14.w1
+ y22.v1.t1
- w2.q =
w2.v1.u2
+ w1.q
+ x12.v12
+ x13.w1.w2
+ x14.v1
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x12.s2
+ y2.x12.w2.v1
+ y2.x14.w1
+ y22.v1.t1
- u1.s2 =
y2.v1.s2
+ y2.x1.v1.u2
+ y2.x1.w2.t1
- u1.s1 =
y2.x1.v1.u2
+ y2.x12.w2.v1
+ y2.x13.u2
+ y2.x14.w2
- t2.s2 =
x2.v1.s1
+ x22.w1.t1
+ x23.s1
+ x12.v1.u2
+ x12.w2.t1
+ x13.s2
+ y2.x12.w2.u2
+ y2.x13.w1.w2
+ y2.x14.v1
- t2.s1 =
x23.w1.v1
+ x13.w2.v1
+ x14.u2
+ x15.w2
+ x15.w1
+ y2.x12.w2.u2
+ y2.x13.t1
+ y2.x13.w1.w2
+ y2.x16
+ x2.w1.r2
- t1.s2 =
v12.u2
+ w2.v1.t1
+ x22.w1.t1
+ x1.v1.s2
+ x1.w2.v12
+ x12.v1.u2
+ x13.s2
+ x13.w2.v1
+ x14.u2
+ x15.w2
+ x15.w1
+ y2.v13
+ y2.x1.v1.t1
+ y2.x13.t1
+ x1.w1.r2
- t1.s1 =
v1.q
+ v12.u2
+ x22.q
+ x22.w1.t1
+ x1.v1.s2
+ x1.w2.v12
+ x13.s2
+ y2.w2.v1.u2
+ y2.x1.v1.t1
+ y2.x1.w2.s2
+ y2.x13.t1
+ y2.x13.w1.w2
+ y2.x16
+ y1.x23.t2
- u3.r1 =
x2.v1.s1
+ x22.w1.t1
+ x23.w1.v1
+ x24.u3
+ y2.w2.v1.u2
+ y2.x13.w1.w2
+ y2.x14.v1
+ y2.x16
+ y1.x23.t2
- u2.r1 =
x1.w2.v12
+ x13.w2.v1
+ x14.u2
+ y2.x1.v1.t1
+ y2.x1.w2.s2
+ y2.x12.v12
- v2.q =
x2.v1.s1
+ x23.w1.v1
- u1.r1 =
y2.w2.v1.u2
+ y2.x12.v12
+ y2.x12.w2.u2
+ y2.x13.w1.w2
- s22 =
x2.v13
+ x25.v1
+ x12.v1.t1
+ x13.v12
+ x14.t1
+ x14.w1.w2
+ x15.v1
+ x17
+ y2.x1.v1.s2
+ y2.x12.w2.t1
+ y22.v13
+ x13.r2
+ y2.x1.w1.r2
+ y22.v1.r2
- s1.s2 =
w1.v1.s1
+ x22.w1.s1
+ x1.w2.v1.u2
+ x12.v1.t1
+ x13.v12
+ x13.w2.u2
+ x14.t1
+ x15.v1
+ y2.x1.v1.s2
+ y2.x13.w2.v1
+ y2.x15.w2
+ y2.x15.w1
- s12 =
x2.w1.q
+ x23.v12
+ x24.t1
+ x25.v2
+ x13.v12
+ x17
+ y2.x12.v1.u2
+ y2.x15.w1
+ x2.v1.r2
- t2.r1 =
x22.w1.s1
+ x23.r1
+ x25.v2
+ x13.v12
+ x13.w2.u2
+ x15.v1
+ x17
+ y2.x1.v1.s2
+ y2.x12.w2.t1
+ y2.x13.s2
+ y2.x14.u2
+ y2.x15.w2
+ y2.x15.w1
+ x2.v2.r2
- t1.r1 =
w2.v1.s2
+ w1.v1.s1
+ x2.v13
+ x22.v1.t1
+ x22.w1.s1
+ x25.v1
+ x1.v13
+ x12.w2.s2
+ x14.t1
+ x15.v1
+ y2.x1.w2.v12
+ y2.x13.w2.v1
+ y2.x14.u2
+ y2.x15.w2
+ y2.x15.w1
+ y2.x1.w2.r2
+ y2.x1.w1.r2
- u3.q =
w1.v1.s1
+ x23.v12
+ x13.v12
+ x15.v1
+ y2.v12.u2
+ y2.x1.w2.v12
+ y2.x15.w2
+ y22.v13
- u2.q =
x1.v13
+ x13.w2.u2
+ y2.w2.v1.t1
+ y2.x1.v1.s2
+ y2.x13.w2.v1
+ y2.x14.u2
+ y22.v1.r2
- u1.q =
y2.v12.u2
+ y2.x1.w2.v12
+ y2.x13.w2.v1
+ y2.x14.u2
- s2.r1 =
x2.v1.q
+ x22.w1.v12
+ x23.q
+ x24.w1.v1
+ x1.v12.u2
+ x1.w2.v1.t1
+ x13.v1.u2
+ x13.w2.t1
+ x14.s2
+ y2.x1.v13
+ y2.x12.v1.t1
+ y2.x12.w2.s2
+ y2.x13.v12
+ y2.x14.w1.w2
+ y2.x15.v1
+ y2.x17
+ y1.x24.t2
+ y2.w1.w2.r2
+ y2.x13.r2
- s1.r1 =
x23.q
+ x23.w1.t1
+ x12.w2.v12
+ x15.u2
+ x16.w2
+ x16.w1
+ y2.w2.v1.s2
+ y2.x12.v1.t1
+ y2.x12.w2.s2
+ y2.x14.w1.w2
+ y2.x15.v1
+ y1.x24.t2
+ x2.u3.r2
+ y1.t2.r2
- t2.q =
x23.q
+ x23.w1.t1
+ x24.w1.v1
+ x12.w2.v12
+ x13.v1.u2
+ x15.u2
+ x16.w2
+ y2.w2.v1.s2
+ y2.x1.w2.v1.u2
+ y2.x12.v1.t1
+ y2.x13.v12
+ y2.x14.w1.w2
+ y2.x15.v1
+ y2.x17
+ y1.x24.t2
+ x2.u3.r2
+ y1.t2.r2
+ y1.x23.r2
- t1.q =
v12.s2
+ v12.s1
+ w2.v13
+ x22.v1.s1
+ x24.w1.v1
+ x1.v12.u2
+ x13.v1.u2
+ x13.w2.t1
+ y2.v12.t1
+ y2.w2.v1.s2
+ y2.x1.v13
+ y2.x12.v1.t1
+ y2.x13.w2.u2
+ y2.x15.v1
+ y2.x17
+ y2.w1.w2.r2
+ y2.x1.v1.r2
+ y2.x13.r2
- r12 =
x22.w1.q
+ x25.t1
+ x26.v2
+ x26.v1
+ x12.v13
+ x16.v1
+ x18
+ x22.v1.r2
- s2.q =
w2.v12.u2
+ w1.v1.q
+ x22.w1.q
+ x1.v12.t1
+ x12.v13
+ x13.w2.s2
+ x14.w2.u2
+ y2.v12.s2
+ y2.w2.v13
+ y2.x1.v12.u2
+ y2.x1.w2.v1.t1
+ y2.x12.v1.s2
+ y2.x12.w2.v12
+ y2.x13.w2.t1
+ y2.x15.u2
+ y2.x16.w1
+ y2.x1.u2.r2
+ y2.x12.w2.r2
+ y2.x12.w1.r2
+ y22.t1.r2
- s1.q =
x2.w1.v1.s1
+ x22.w1.q
+ x23.v1.t1
+ x12.v13
+ x14.v12
+ x14.w2.u2
+ x15.w1.w2
+ y2.v12.s2
+ y2.x1.w2.v1.t1
+ y2.x12.w2.v12
+ y2.x14.s2
+ y2.x15.u2
+ y2.x16.w1
+ y22.v12.t1
+ x2.t1.r2
+ x22.v2.r2
- r1.q =
x23.w1.v12
+ x24.w1.t1
+ x25.w1.v1
+ x26.u3
+ x1.w2.v13
+ x13.w2.v12
+ x16.u2
+ x17.w2
+ y2.w2.v12.u2
+ y2.x12.v13
+ y2.x12.w2.v1.u2
+ y2.x13.v1.t1
+ y2.x13.w2.s2
+ y2.x16.v1
+ y2.x18
+ y1.x25.t2
+ x2.w1.v1.r2
- q2 =
x2.w1.v1.q
+ x23.v13
+ x24.v1.t1
+ x25.v12
+ x26.t1
+ x27.v2
+ x1.v14
+ x17.v1
+ y2.v13.u2
+ y2.x16.u2
+ x2.v12.r2
+ y22.v12.r2
A minimal Gröbner basis for the relations ideal
consists of this minimal generating set, together with the
following redundant relations:
- y22.x12 =
0
- y2.w1.v1 =
y2.x1.u2
+ y22.t1
- y22.x1.v1 =
0
- x1.w1.v1 =
x12.u2
+ y2.x1.t1
+ y2.x1.w1.w2
- w1.w2.v1 =
x2.v12
+ x1.w2.u2
+ y2.w2.t1
+ y2.x12.u2
+ y22.v12
- y2.w1.t1 =
y2.x1.s2
+ y2.x1.w2.v1
+ y22.v12
- y22.x1.t1 =
0
- x1.w1.t1 =
x12.s2
+ x12.w2.v1
+ y2.x1.v12
+ y2.x12.w1.w2
+ y2.x15
- w1.w2.t1 =
x2.v1.t1
+ x1.w2.s2
+ x12.v12
+ y2.w2.v12
+ y2.x1.v1.u2
+ y2.x13.u2
+ y2.x14.w2
+ y22.v1.t1
This cohomology ring was obtained from a calculation
out to degree 18. The cohomology ring approximation
is stable from degree 18 onwards, and
Benson's tests detect stability from degree 18
onwards.
This cohomology ring has dimension 3 and depth 1.
Here is a homogeneous system of parameters:
- h1 =
r2
in degree 8
- h2 =
v1
+ x22
in degree 4
- h3 =
x2
+ x1
in degree 2
The first
term h1 forms
a regular sequence of maximum length.
The first
term h1 forms
a complete Duflot regular sequence.
That is, its restriction to the greatest central elementary abelian
subgroup forms a regular sequence of maximal length.
Data for Benson's test:
-
Raw filter degree type:
-1, 4, 9, 11.
-
Filter degree type:
-1, -2, -3, -3.
-
α = 0
-
The system of parameters is very strongly quasi-regular.
-
The regularity conjecture is satisfied.
A basis for R/(h1, h2, h3) is as follows.
-
1
in degree 0
-
y2
in degree 1
-
y1
in degree 1
-
x1
in degree 2
-
y22
in degree 2
-
w3
in degree 3
-
w2
in degree 3
-
w1
in degree 3
-
v2
in degree 4
-
y2.w2
in degree 4
-
y2.w1
in degree 4
-
u3
in degree 5
-
u2
in degree 5
-
u1
in degree 5
-
t2
in degree 6
-
t1
in degree 6
-
w1.w2
in degree 6
-
y2.u2
in degree 6
-
s2
in degree 7
-
s1
in degree 7
-
y1.t2
in degree 7
-
r
in degree 8
-
w2.u2
in degree 8
-
y2.s2
in degree 8
-
q
in degree 9
-
w2.t1
in degree 9
-
w2.s2
in degree 10
-
y2.w2.s2
in degree 11
A basis for AnnR/(h1, h2)(h3) is as follows.
-
y1.h
in degree 3
-
y22.h
in degree 4
-
y2.u2.h
in degree 8
-
y1.t2.h
in degree 9
A basis for AnnR/(h1)(h2) is as follows.