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Introduction

In this paper we calculate part of the integral cohomology ring of the sporadic
simple group Jy: this group has order 22!.33.5.7.113.23.29.31.37.43. More
precisely, we obtain all of the cohomology ring except for the 2-primary
part. As the cohomology has already been written down [9] at the primes
which divide the group order only once, we concentrate here on the primes 3
and 11. In both of these cases the Sylow p-subgroups are extraspecial of
order p? and exponent p. We use the method which identifies the p-primary
cohomology with the ring of stable classes in the cohomology of a Sylow p-
subgroup. The stable classes are all invariant under the action of the Sylow p-
normaliser; and some time is spent finding invariant classes in the cohomology
ring of pfr”, the extraspecial group. Section 2 studies the prime 11: the
invariant classes are the stable classes, because the Sylow 11-subgroups have
the Trivial Intersection (T.I.) property. In Section 3 we study the prime 3,
and see that all conditions for invariant classes to be stable reduce to one
condition.

In Section 4 we obtain the corresponding parts of the Chern subring of J,.
We make much use of generalised characters of the Sylow subgroups that are
constant on the conjugacy classes of Jy. (Strictly, on the intersections of p}r“
with the conjugacy classes of Jy.)

1 Preliminaries

In order to calculate the integral cohomology ring of a finite group G, it is
enough to calculate the localisation of this ring at each prime p that divides
the order of GG. After localising at p, restriction from G to any Sylow p-
subgroup P is an injection, since it is split up to a unit by corestriction.
Theorem 1 characterises the image of this restriction map. Recall that a
class x in the cohomology of P is stable if for all g in G the restriction of x to
the intersection P N PY is equal to the restriction of g*x from P9 to P N P9,
where ¢g* is induced by conjugation by g.

Theorem 1 (/2] XII 10.1) With the above notation, restriction from G to
P identifies H*(G,Z) ) with the ring of stable classes in H*(P,Z) ). n

If g normalises P, then g acts on the cohomology of P. The class x
is tnwvariant if it is fixed under this action of the Sylow p-normaliser. The
ring H™ of invariant classes clearly contains the stable classes, and is simpler
to calculate. In each case studied here, we start by finding the invariant
classes and then determine which of them are stable.

The group J4 The group J; has order 221.33.5.7.113.23.29.31.37.43, and is
the fourth largest sporadic simple group. It was discovered by Janko [4] and



proved to exist by Norton, Parker, Benson, Conway and Thackray [8], who
constructed a representation in GLq12(F5). Many properties of Jy are listed
in the Atlas [3].

For the primes which divide the order of J; only once, the Sylow p-
subgroups are cyclic and calculating the cohomology is straightforward:

Theorem 2 9/ Let p be a prime that divides the order of Jy exactly once.
Then H*(J4, Z) () ts generated by oy, with degree as shown below:

D 5 7 23 29 31 37 43
deg o, | 8 6 44 56 20 24 28
X X2 X2 X2 X2 X56 X553  X46

The only relation is pa,, = 0. The generator «,, s a Chern class of a rep-
resentation of Jy which affords the irreducible character x given above. We
have used Atlas notation [3], and chosen characters of lowest degree. (]

The primes that divide the order more than once are 2, 3 and 11. Since
the cohomology of the Sylow 2-subgroup is not yet known, there are two
primes, 3 and 11, where the calculations are both interesting and feasible.
We now list the properties of J; that we use. We are interested in Sylow
p-subgroups, their normalisers, and the ways in which Sylow p-subgroups
intersect with each other.

Theorem 3 (3], [5]) The Sylow 11-subgroups of J, are isomorphic to 1142,
Distinct Sylow 11-subgroups have trivial intersection. The centraliser of a
Sylow 11-subgroup is its centre, and the normaliser is 11?2: (5 % 2.5y).

There are two conjugacy classes of elements of order 11 in Jy. The cent-
ral elements in 11fr2 are in class 11A, and the non-central elements are in
class 11B.

The Sylow 3-subgroups of Jy are isomorphic to 3}r+2. The centraliser of a
Sylow 3-subgroup is cyclic of order six, and the normaliser is (2 X 31++2: 8): 2.

Since Jy contains Mo, which in turn contains 3%:2S,, there are Sylow
3-subgroups of J, that have different centres and intersect with order 32. All
elements of order 3 in Jy are in the conjugacy class 3A. [
The extraspecial p-group pfr2 The extraspecial p-group of order p* and
exponent p is a Sylow p-subgroup of J; when p is 3 or 11. A presentation is

Pt = (A,B,C: AP =B’ =C"=[A,C]=[B,C]=1, [A B]=0C),

where [X, Y] denotes XY X~'Y~!. The centre is cyclic of order p, generated
by C.

The automorphisms of pi“ are those endomorphisms which send A to
A" BYC" and B to A"B*C*, with 1’'s — rs’ non-zero. The inner automorph-
isms are the automorphisms of the form A — AC* and B — BC": so we can
describe the outer automorphisms of pr thus:



Lemma 4 The outer automorphism group of p}r“ is isomorphic to GLoF),:
the matrix (;:;) with determinant j corresponds to the class of the auto-

morphism which sends A to A" B*, sends B to A"B*, and C to CY. m

(Note that the map we have given here is not a homomorphism from GL.F,
to the automorphism group of p}r”.)

We use this isomorphism to identify outer automorphisms of pfz with
elements of GLyF,. This group acts on the cohomology of pi”, because inner
automorphisms of a group pass to the trivial automorphism in cohomology.

For a Sylow p-subgroup P of a group G, let Out, denote the group of
outer automorphisms of P which are induced by inner automorphisms of G;
that is, the outer automorphisms that occur as conjugation by some element
of the Sylow p-normaliser N,,.

We now give the cohomology of p}™ and a subgroup: for proofs see [7].

Proposition 5 Let p be an odd prime: then H*(CP x CF,Z) is generated
by B and ~ in degree 2, and x in degree 3. All three generators have additive
order p, and x squares to zero. The automorphism of C, x C, which switches
the two factors sends 3 < v and x — —Xx. [

Theorem 6 (7], [6]) The cohomology ring H*(p}*2, Z) is generated by

Generator aq, Qo vy, Uy 0; for2 <j<p—2 K ¢
Degree 2 3 27 2p — 2 2p
Additive order p p p p P’

The v; and the 0; square to zero. The remaining relations (including some
redundant ones) are:

Q19 = Qal)y ajab = das
2p—2 ~1_p-1 2p—2
Vi kK2=a? " = ab T 4+ a)f abvy = o,
N3 for some A€ ¥, if p>3
3A(  for some A = *£1, if p=3.

ak = —af
-1

vik = —af

Oéiej = Vigj = lej == Ii@j =0 Vg = {

Under the map of Lemma 4, the matrix (g;} g;g) with determinant j fizes K,

sends 0y, to 750, sends ¢ to j°C and sends
Qi = a0+ Qg0 vi = jlapvy + apts).

Under restriction to C’f X C'pc, the generators an, v1 and 0; are sent to zero,
and

ay— 3 e x ke =N (P = .



We derive two corollaries which help us to calculate inside this cohomology
ring. The first looks at the additive structure, and the second relates the
odd- and even-degree classes.

Corollary 7 The ring H*(pi”, Z) has the additive structure of the direct
sum of three modules: the free Z-module generated by 1, the free Z/p?-module
on the ¢* for £ >0, and the F,-vector space with basis

a’iaé@f fori>0andj<p aggﬁ forj >0 k(C

aladu ¢t for j <p st 0.

Let Vi be the submodule spanned by the oiad ¢t and o4¢t, let Vy be the sub-
module spanned by the ool ¢t and odnCt, and Vi the submodule spanned
by 1, ¢*, 0kt and kCh. Then H*(plt2, Z) is the direct sum Vi @ Vo @ Vi, and
this decomposition is respected by the action of the automorphism group.

Proof: Using the relations in Theorem 6, these classes are seen to span the
cohomology ring. To see that they are linearly independent (in the obvious
sense), consider the orders of the groups H"(pl?) as obtained in [7]. n

Corollary 8 Let £ be the ring of even-degree classes in H*(p1++2, Z). So¢&
1s Vi @ V3, and Vy is the set of odd-degree classes. Also, Vi is the £-module
generated by the o;, and Vs is the E-module generated by the v;. Then the map
®: V) — V, defined on the generators by a; — v; is a well-defined €-module
1somorphism.

If x and y are classes in Vi, then x(®y) = ®(xy) = (Px)y. If ¢ is an
automorphism of pi? that sends C to C7, then *(®z) = jd(*x).

Proof: This is simple to check: for example, observe that ®(a;as) is well-
defined. ]

2 The 11-local cohomology

In this section we prove:

Theorem 9 The ring H*(Jy, Z)11) has generators as follows:

Generator Q@ 16} 14 v ¢j for2<j<9 K n
Degree 56 148 35 127 220 — 205 20 220
Additive order | 11 11 11 11 11 11 112

The classes p, v and ¢; square to zero, and the other relations are:

av = [u a® = —fk B3? = —akn

pr =0 o’y = —vk o*B = rn By = —pkn
a¢j _ ﬂﬁﬁj — /’i(bj — M(bj = V¢j = ¢z¢] =0 .



Since Jy is T.I. at 11, all the invariant classes are stable. Hence the 11-local
cohomology of J; is the ring of invariant classes in the cohomology of 11f2;
that is, the ring of classes fixed by the subgroup Outy; of GLyF;. From
Theorem 3, we see that Outy; is isomorphic to 5 x 2.54. There is only one
conjugacy class of such sugroups in GLyF1;, because GLyF1; is 5x2.L5(11).2,
and from the Atlas we see that Ls(11).2 contains only one conjugacy class
of subgroups isomorphic to S;. So, choosing new generators for 11%:r2 if
necessary, any subgroup of GLsF1; which is isomorphic to 5 x 2.5, will do.

Let A= (30°).B= (%) c=(37).p=(3%). €= (%7) and

F = (30), Then the subgroup of GL,F;; generated by these six matrices

is isomorphic to 5 x 2.5,: for F has order 5 and is central, A is central, and
the other relations are:

CB = ABC
DB = BCD DC = BD
EB = ACE EC = ABE ED=D'¢ .

A2 =D} =£2=1]
B2=C>=A

This corresponds to taking generators (1 2)(3 4), (13)(24), (234) and (2 3)
for Sy.
Let H be £F. We will use the normal series

1<(B)<(B,C)<(B,D)<(B,D,H) = Outy;

in order to calculate the invariant classes. In the following results we obtain
the ring of classes fixed by each successive term in the normal series. Since
the series is normal, each group in the series acts on the fixed ring of the
previous group. Theorem 9 is a trivial corollary of Proposition 13 below. We
begin by concentrating on the ring generated by «; and as.

Proposition 10 Let S be Fii[ay, as]/(a1ad' — ajlas). Then the subring of
elements which are fized by B, C and D is generated by

_ 6 5 4 2 2 4 5 6
E = o) — 2009 — daja; — dajay + 2005 + g
8 7 6 2 5.3 3.5 2 6 7T, 8
G = of +ajay —4daja; + 4ajay — dajay — dajoy — aqay + @,
and is F11[E,G]/(E* — G?).

In the following lemma we start to prove this proposition by finding the
subring fixed by B. The proof of this lemma is typical of the invariant
calculations to come, and we give the proof in some detail.

Lemma 11 In Proposition 10, the subring S* of elements which are fized by
B is generated by

A=ad?+a; B=oal+5d0as+a; C=4(as—diay),

and is F11[A, B,C|/(3B*C — C3, A* — B? — C?).



Proof: Let V be a two-dimensional F;;-vector space, and let a; and a be
a basis for its dual V*. Let 3 be the symmetric algebra Fi;[aq, as] of V*.
Then S is the quotient X/(ayad! — ajlas). The natural action of GL(V)
on V* induces an action on . This induces in turn an action on S, because
matrices act on ajai! — atlas as multiplication by their determinant. This
is the action described in Theorem 6.

We want the elements in S that are fixed by B = (_01 (1)), which sends o

to ap and as to —a;. We start by choosing new generators for S which are
eigenvectors for B. The characteristic polynomial of B is X2 + 1, and since
F'; does not contain a square root of —1, we extend the field to Fq5;. Let ¢
be a square root of —1 in Fio1, and denote by V* 3 and S the obvious
extensions. Setting 61 = a3 — iap and [y = + ia, we have a new basis
for V* with BB, = i, and BBy = —if35. Then 3= Fi91[01, B2], and every
monomial 575" is an eigenvector with eigenvalue "~

The fixed elements in 3 are spanned by the [} 62 for which n = m
mod 4, and are therefore generated by v, = 3{, 72 = $132 and 3 = 85. The
relation 5 = 7173 is clear from the definitions. Since the 3; are algebraically
independent in f], this is the only relation. Now turn to S: certainly (the
images of) the (3; generate S, and the fixed subring ST contains the v;. The ~;
generate S too: for A12 — 12 = 2i(ayal! — allay), and so the quotient map
from 3 to S is a bijection when restricted to the span of those By 35 with
m < 12.

So St is generated by 71, 72 and 73, which satisfy the relations v§ = 3
and yj = - 7173 We show that these two relations are sufficient. Let J be the
ideal in 2 consisting of the relations in S: then J is generated by v — 3.
This generator lies in St the subring of fixed elements in 3. To show that
our relations are sufﬁment we have to show that v} — ~3 generates the ideal
31N J in B, This means that for every z in ¥ such that (3 —~3)z is fixed,
we must prove that there is a fixed y such that (73 —v3)z = (73 — 73)y.

To prove this, let T" be the subspace of 3 with basis those monomials
B1 05" such that n #% m mod 4. Then T is additively a complement of 31
in 3, and if 2 € T is such that (3!2 — 812)z € %!, then (512 — 12)z = 0.

The intersection of S and S! is the ﬁxed points of S under the action of
the Galois group of Fi5; over Fi;. The non-trivial automorphism switches
01 and [, fixes v, and switches v; and 3. So if we define A = v, B =
L1 +3) and C = L(y1 — 73) then A, B and C all lie in S*. Since S
is generated over Fi5; by A, B and C subject to the relations C? = 3B2C
and A* = B? + C?, it follows that S! is generated over F;; with the same
generators and relations. [

We now continue with the proof of Proposition 10; having worked through
one step in detail, we now only give the highlights.



—1 -
3 13> sends o to —a; — 3

and ap to —3aq + ag, and so sends A to —A, sends B to —5B — 3C, and C
to —3B + 5C'. The eigenvectors are 3 = B — 2C', , = B — 5C' and (33 =
A, with eigenvalues 1, —1 and —1 respectively. Then S! is the quotient
of Fi1[B1, B2, B3] by the relations 55 = —306? + 465 and (105 = (3. The
subring S? of elements in S! fixed by C is therefore spanned by the 373735
for m = ¢ mod 2, and generated by v, = 31, 72 = 35, 73 = 3233 and v, = 3.
The relation 72 = 7974 follows from the definition, and the relations in S?
become v, = —37% + 492 and v,72 = ;. These relations are sufficient:
consider the complementary subspace spanned by the 373535 with m # ¢
mod 2.

Generator v, is redundant, so we eliminate it and put D = v, put £ = 3
and F = 74 to get S? isomorphic to the quotient of Fi,[D, E, F] by the
relations B? = 4F3 — 3D?F and D? = DF?. In terms of a; and ay, we have
F = af + 2a%a2 + a3 and

Proof of Proposition 10: The matrix C = (

D = aj —3ajas+5aias + 3anas + a,
E = of —2a8a; — 5ajas — bala; + 2a1ah 4 af.

<3 _54>: this sends a; to

We now look for the elements also fixed by D = | |
3aq + Han and an to 4a; — 4as. So D sends D to 5D — 5F, fixes E and sends
F to 4D + 5F. The characteristic polynomial X2 4+ X 4 1 splits over Fiy;
with roots 5+ 3i. Eigenvectors are §y = E, By = D —2iF and 83 = D+ 2iF,
with eigenvalues 1, 5 + 3¢ and 5 — 3¢ respectively. Then 52 is the quotient
of Fia1[31, Ba, B3] by the relations 33 = —35 and 85 — 33 = 4if3?. The fixed
elements are spanned by the 374535 with m = ¢ mod 3 and so generated
by 1 = b1, 72 = 33, y3 = 02 and 4 = 33. The relation V3 = Yo i
immediate from these definitions, and the relations in S? become 7, = —7,
and vy, — v4 = 4iy?. Sufficiency: consider the subspace spanned by the

n3y 35 with m 2 (.

We eliminate the redundant generators v, and 4. Set G = —2v5 and
recall that vy = E. These are both defined over Fi;, and so the result is
proved. [

We now use the result of Proposition 10, together with the decomposition of
Corollary 7 and the isomorphism @ of Corollary 8 to find the classes in the
cohomology of llff? which are fixed by B, C and D.

Proposition 12 The subring R® of H*(11112Z) of classes which are fived
by the actions of B, C and D 1is generated by E, G, e = ®F, g = ®G, k,
¢ and the 0;. All generators have additive order 11, apart from (, which
has 112. The classes e, g and 8; square to zero. The other relations are:

Eg=eG E? = -Gk o 9 G* = —Fk
eqg =0 E%ec = —gk EG=n Gg = —ek
E9j = GQJ = /‘iej = 69]‘ = 99] = erj = O



Proof: The matrices B, C and D all have determinant 1, and so fix x, ¢
and the 6;. Hence V3 is contained in R®. Since V; is graded by powers of ¢,
Proposition 10 implies that the fixed classes in V; are the polynomials in F,
G and (. Since B, C and D all commute with ®, the fixed classes in V5 are
precisely the images under @ of the fixed classes in V;. Hence R? is generated
by E, G, e, g, k, ¢ and the 0,.

Relations: From Proposition 10 we get E* = G2, and it follows from
Corollary 8 that Eg = Ge and F3e = G?g. Since a;v1v5 = 0, we have eg = 0.
We know that x2, Ex and Gx must be polynomials in £ and G: comparing
degrees, we see that they are scalar multiples of E?G, G? and E? respectively.
Comparing coefficients of highest powers of a; we have k? = E*G, Ex = —G?
and Gk = —E3. Applying ® we obtain ex = —G¢ and gk = —E%e. The
relations E* = G3 and E3ec = G%g are redundant, because they follow from
the two ways of evaluating EGk, Gek respectively.

Sufficiency: Any polynomial in the generators can be decomposed into a
sum of classes in V7, V5 and V3, and so we must show that we have all relations
inside these three submodules. All elements in V3 are fixed, so we are safe
there. Since degree of ¢ grades Vi, all the relations there are accounted for
by B* = G and 112¢ = 11E = 11G = 0. Since ® is an isomorphism from V;
to Vs, extra relations inside V5 would imply extra relations inside V;. m

Proposition 13 The ring H™ of classes in H*(11172 Z) which are fived
by B, D and H is generated by k, n = C*°, ¢; = 0,7, and

(a — 205y — bajas — bata, + 2a1ah + aQ) ¢
= ((a — 2a1a2 5a1a2 Soag + 205)v1 + ajs) ¢

7 8\ 6
ol + a1a2 aSal +4asal — 4atal — 4aiad — aral + aQ) ¢

R @®E R
I

= ((of + afas — 4a1a2 + dajal — dafay — donay — af)vy + adw) (.
All generators have additive order 11, apart from n, which has 112; the gen-
erators u, v and ¢; square to zero; the other relations are:

av = Bu o =—fk 23 _ .2 5% = —ann
uv =0 o’ = —vk o’ =K Bv = —pkn
agi = B¢ = ki = pd; = ve; = d;¢; = 0.

Proof: We need the classes in R? which are fixed by H. Recall that H is

EF = (1 :11)' This has determinant 2, which has multiplicative order 10

in Z/11 and 110 in Z/121. So & is fixed, 0; is sent to 276;, and ¢ to 2''(.
For degree reasons, E and G must be eigenvectors; comparing coefficients of
highest powers of oy, we get E +— 272EF and G + 2*E. Hence e — 27 e and
g — 2°g. Therefore all generators of R?® are eigenvectors.

The fixed classes in V3 are spanned by 1, ('%, (1% and 6;¢1%~7. Hence
they are generated by , n = ¢'® and ¢; = 6,¢'°7. From Proposition 12,

8



the intersection Vi N R? is the module on E, G, EG, E? and x? over the
ring generated by x and (. Hence the invariant classes in V; are the module
on E¢?, GC¢° EGC®, E?C* and k? over the ring generated by x and (.
Therefore we need two extra generators o = F(? and 8 = G(° to account
for Vj. Turning to Vs, we have H®(x) = 2P(Hz), and so H®(x) = (H(x()).
Hence ®x is fixed if and only if x( is, and so the invariant classes in V5 are
the module on e¢, g5 Ge(’, Ee¢® and ®(k?)¢® = EGe(® over the ring
generated by s and (1%, We set u = e and v = ¢(°, and this completes our
set of generators: note that ®(x%)(? = afu. The relations are clearly true
and sufficient, by comparison with the relations in Proposition 12. [

This completes the proof of Theorem 9. We round off this section with a
result that expresses the 11-primary cohomology of J; as a simply-defined
subring of a ring with three generators.

Theorem 14 Let R be a commutative graded Z1)-algebra, generated by A
and Z in degree 2 and M in degree 3, subject to the relations M?* = 0 and
112Z = 11A = 11M = 0. Then there is a monomorphism which embeds
H*(Jy, Z)11) in R as follows:

K,D—>—A10
77»—>le0.

., A67722 s A8 766 '
/O: L ﬁ5f4z11 5 = ﬁ7f4255 ¢j = 11210710
Proof: This map is easily seen to be well-defined, so we only have to show
that it is injective. The ring H*(J4, Z)1) has the additive structure of the
direct sum of three modules: the free Z)-module generated by 1; the free
Z/112-module on the n‘ for ¢ > 0; and the Fy;-vector space with basis as
follows:

kknt for k>0 akknt BrFnt afkknt o2 kknt

ol
aBprtn’ S 7S (R T e O L
It is straightforward to check that these generators all map to different
monomials of the correct additive order, and the result is proved. [

Notice that R is isomorphic to the Z;)-cohomology ring of C'y x Cjj2. It
should also be noted that there does not exist such a nice embedding for
H*(pl2,Z) -

3 The 3-local cohomology

We now apply the same methods to the 3-primary cohomology of J;. Calcu-
lating the invariant classes is much more straightforward than in the p = 11
case, but this time not all invariant classes are stable. We prove:



Theorem 15 The ring H*(Jy, Z)3) is generated by o in degree 16, & in de-
gree 12 and @ in degree 27. The only relations are 3°¢ = 3a = 3w = 0 and
w? = 0.

By Theorem 1, the 3-local cohomology is the subring of stable classes in
the cohomology of P = 3?2. Since all stable classes are invariant, we start
by calculating H™, the ring of classes fixed by Outs.

From Theorem 3, the order of Outs is 2%, and it is therefore a Sylow
2-subgroup of GLyF3. As Sylow subgroups are unique up to conjugacy, any

one will do. Write J = ( ! _1>,IC = (_01(1)> and £ = (?_11) Then J = L2,

—1-1
and the subgroup generated by K and £ has order 2*: for K has order 4, £
has order 8, £* = K2, and LK = KL£3. Hence Outs is generated by K and £

(up to choice of generators for P), and a normal series for Outs is
1a(J) <(TJ,K) <(K, £) = Outs.

We now obtain the ring of classes fixed by each successive term in this nor-
mal series in a sequence of lemmas leading up to Proposition 17, where
H*(3472, Z)™ is obtained. After this we address the problem of finding the
stable classes.

Recall from Theorem 6 that the integral cohomology of 31*2 is generated
by aq, as, 11, V5, kK and (.

Lemma 16 The ring R* of classes which are fized by J and K is generated
by k, ¢ and ¢ = a3vy — aaivy + aive. The only relations are 32°¢ = 3k =
3c=0 and ¢ = 0.

Proof: Since J and K have determinant 1, they fix x and (, and commute
with the map ® of Corollary 8. Let T be the ring generated by s and (,
and S the ring generated by a; and as. Every class in T is fixed, and we
show below that the fixed classes in S are generated by x? and x®. Hence, in
the decomposition of Corollary 7, the intersection B2 N V; is the T-module
on k2. Every class in Vj is fixed and by Corollary 8, R?> NV, is the T-module
on ¢ = k2 so we have a generating set. The relations follow immediately,
and allow us to decompose any polynomial in the generators into a sum of
classes in V;, V5 and V3. We certainly have all relations in V; and V3, therefore
also in V5 by applying the isomorphism ®: so the result is established.

It remains to prove that, in the ring S generated by a; and «y, the
fixed classes are generated by x? and x3. We use the method of Lemma 11.
Effectively, S is F3[ay, as]/(a1a3 — alay). Eigenvectors for J over Fy are
01 = a1 + as —iag and By = a1 + ag + iay with eigenvalues ¢ and —i
respectively. The ring S! of classes in S fixed by J is generated by A =
a? — ajan — a2 and B = af — aday — a3 with the relation B? = A*. Then
Ak = —B and k? = A%. Hence S' has a basis consisting of 1, Ax* and &?,
with ¢ > 1. As K fixes k and sends A to —A, the classes in S fixed by J and

IC are spanned by 1 and & for ¢ > 1, as claimed. [

10



Proposition 17 The ring H*(3112 Z)™ is generated by r, n = ¢* and d =
3

(advy — @iy + adws)C. The relations are 3?1 = 3k = 3d = 0 and d* = 0.

Proof: k is fixed as usual. £ has determinant —1, and so { — —(. We
also have ¢ — —c, because ¢ = ®x? and L& = —PL. The fixed classes are
therefore generated by s, ¢? and ¢(, and the relations are obvious. [

We must now determine which of the invariant classes are stable. As P
has order 32, distinct conjugates of P can intersect with order 32, 3 or 1.

Proposition 18 Let G be a finite group with Sylow p-subgroup P = p}r“,

and suppose that x € H*(P,Z) satisfies the stability condition for all g such
that the intersection P N P9 has order at least p: then x is stable.

Proof: Trivial if the intersection has order 1. If order p, recall that = satisfies
the stability condition for g when a certain pair of cohomology classes of
P N P9 are equal. This certainly implies equality after corestriction to P.
Conversely, if x is “stable after corestriction” for all g € GG, then x is stable:
inspect the proof in [2] of our Theorem 1. So x is stable if it is “stable after
corestriction” for the g such that PN PY is cyclic of order p. But corestriction
from C), to pi*? factors through corestriction from C, to C,, x C,, which is the
zero map (away from degree zero, where all stability conditions are trivial).
It is the zero map because restriction from C, x C, to C,, is surjective (split
by inflation), restriction followed by corestriction is multiplication by the
index p, and cohomology classes of C}, x C, in positive degree have additive
order p. [

Before studying intersections of order 32, we prove an important lemma
which means that choosing new generators for P has no effect on the invariant
classes.

Lemma 19 Let ¢ be an automorphism of 3?2. The induced cohomology
automorphism ¢* fives every class in H* (372, Z).

Proof: From Proposition 17, the ring H™ is generated by &, ¢ and ®(x%¢).
Define j by v/C' = C7. The automorphism * fixes x, multiplies ¢Z by j° and
multiplies ®(x2¢) by j2. Since j = 41 mod 3, we have 52 = 1 mod 3 and
7% =1 mod 9. Hence ¢? and ®(x%() are also fixed. n

All subgroups of P = 3_1:r2 of order 3% have the structure C5 x Cs, and
contain the centre. They are all normal, but are permuted transitively by
the automorphism group. Recall that P has generators A, B and C, with C'
central.
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Lemma 20 Let g € Jy be such that P and PY intersect with order 3%, and
let x be a class in H*(P,Z)"™. If P and PY have the same centre then x is
stable with respect to g. If they have different centres then x is stable with
respect to g if and only if Reszm x 18 fized by the automorphism f of (B, C)
which sends B « C.

Proof: Same centre: Since Lemma 19 allows us to choose new generators
for 3?2 without affecting the invariant classes, we may assume that PN PY is
the subgroup (B, C). Then gBg~!isin P and gCg~! is a power of C. Let v
be an automorphism of P that sends B to gBg~! and C to gC¢g~!. Therefore
including (B, C) in PY and then conjugating by ¢ is the same map to P as
including in P and then applying . In cohomology, this is the stability
condition twisted by 1*. Since ¥* fixes invariant classes, the result follows.

Different centres: Again, we may assume that PN P9 is (B, C)), with gBg™*
now a power of C and gC¢g~! an element of P. For 1, pick an automorphism
of P which sends B to gCg~! and C to gBg~'. Inclusion in PY followed by
conjugation is now the same map as f followed by inclusion in P followed
by %, and the result follows as before. [

The importance of Lemma 19 here is that it allows us to choose auto-
morphisms of 3#*2 without having to consider whether they are induced by
inner automorphisms of J;,. We now finish the proof of Theorem 15.

Proposition 21 The stable classes in H*(311%, Z) are generated by o = r(?,
£=C—k and @ = (adv) — ayasv +aids) (3. The relations are 326 = 3a =

3w =0 and w? = 0.

Proof: We have seen that the only g € J; that impose non-trivial conditions
for invariant classes to be stable are the g for which P and P?Y have different
centres and intersect with order 3%2. Such g do exist, because .J; contains the
Mathieu group M;,, which in turn contains 32:2S4. So an invariant class is
stable when its restriction to (B, C) is fixed by the map f*.

From Theorem 6, restriction to (B, C') sends k to —3%, sends 7 to (73 —
(%7)% and d to $3(y® — B%y)x. From Proposition 5 we see that f* sends
B3 « ~v and x to —y. Hence the classes k1, n — 3, and dn are stable: we
claim that they generate all the stable classes.

Consider first an even-dimensional invariant class m whose restriction to
(B, C) is fixed by f*; then 7 is a polynomial in x and 1. We prove that 7 is
a polynomial in k1 and n — k® by induction on degree. Subtracting powers
of n — k3 if necessary, we assume 7 = ki’ + £x’ for some ¢ € F3. Then the
restriction of kn7’ is divisible by (%72, whereas ReséDB’c) k7 = (—1)74p.
Hence ¢ is zero, for otherwise Resz,er would contain a monomial 3%
without the corresponding v% required to be fixed by f*. Therefore 7 = xnm’,
and so ResfD B,C) 7' is fixed by f*. Since 7’ has lower degree than 7, it is a
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polynomial in k1 and n—x3 by the inductive hypothesis, and so the inductive
step is proved. The result is trivial in degree zero, and so k1 and 7 — &3
do generate the even-dimensional stable classes. The odd-dimensional case
is similar: no invariant class which includes a monomial of the form dx’ can
be stable. We have a generating set for the stable classes, and the relations
follow from Proposition 17. [

4 The Chern subring

Chern classes are a link between the ordinary representation theory and
the integral cohomology of G. They are defined in the appendix of [1]. A
representation p of a finite group G has Chern classes ¢;(p) € H*(G,Z) for
1 = 0, with cop = 1, and ¢;p is zero if i exceeds the degree of p. Two
important properties are naturality, c¢;(f'p) = f*(cip), and the Whitney sum
formula c(p; @ p2) = c(p1)c(p2). Here ¢(p) = Y ¢;p is the total Chern class

i>0
of p.
The Chern subring of G, denoted Ch(G), is the subring of H*(G, Z) gen-

erated by all Chern classes in H*(G,Z). In this section we prove:

Theorem 22 The 11-primary part Ch(Jy)ay of the Chern subring is gen-
erated by k, n and the ¢;. It is also generated by the Chern classes of a
representation affording the irreducible character x4 of degree 299,367 (Atlas
notation).

The 3-primary part Ch(Jy) )y of the Chern subring is generated by 3¢,
32, &3 and o. It is also generated by the Chern classes of a representation
affording the irreducible character xo of degree 1,333.

Restriction commutes with taking Chern classes. So we restrict each repres-
entation of J; to a Sylow p-subgroup, decompose this restriction, and apply
the Whitney formula.

The irreducible representations of pr are p™ for 0 < xz,y < p—1, and
p® for 1 < z < p— 1. They have characters

XY ATBCY —  exp {2mi(rx + sy)/p}
pexp {2mizt/p} r=s5s=0
0 otherwise.

Xz:ArBsct N {

The p™ are 1-dimensional, and the p* are induced from (B, C).

Theorem 23 ([6]) The total Chern classes of the irreducible representations

p—2 )
ofpfr2 are c(p™) = 1+zay+yas and ¢(p®) = 14 %(?)279]-—1—&4—21’(. n
=2
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We call the intersection of P with a conjugacy class of G a G-conjugacy
class in P, and define a G-class function on P to be a function on P which
is constant on the G-conjugacy classes. Then characters of G restricted to P
are (G-class functions.

Lemma 24 Let P a Sylow p-subgroup of a finite group G. Then Ch(G))
is the subring of H*(P,Z) generated by the Chern classes of those represent-
ations of P whose characters are G-class functions.

Proof: It is enough to show that every character ¢ of P which is a G-class
function extends to a generalised character of G. From Brauer’s Induction
Theorem, a class function on G is a generalised character if its restriction to
every elementary subgroup of GG is a generalised character.

Extend ¢ to a class function ¢ on G by defining ¢ in the obvious way on
p-elements (including the identity). If g has order mp" where pfm, then pick
an s such that m | s and p” = 1 mod s, and define ¥(g) = ¢(g*). Clearly
1 is a character after restriction to any subgroup which is the direct product
of a p-group and a p’-group; but all elementary groups are of this form. [

We obtain a spanning set for those characters of P which are G-class
functions. In p“r2 let pC' be the set of non-identity central elements, let pD
be the non-central elements and pFE all non-identity elements. From The-
orem 3, the Jy-conjugacy classes in 11?r2 are 1, 11C and 11D. In 31++2 they
are 1 and 3F.

Lemma 25 Let x be a generalised character ofpfr2 which is constant on pC

p—1 p—1
and on pD. Then x is in the Z-span of X°°, xP = 3= x®™ and x° = > x*.
z,y=0 z=1
If x is constant on pE then x is in the Z-span of x°° and x¥ = xP + px©.
So the Jy-class functions in 11172 are spanned by X, xP and x¢, and

m 3}:’2 by X and x®. We have character tables

| 1 11C 11D
X111
XP (121 121 0
x¢ 110 —11 0

1 3E
1 1
E127 0

X
X

Proof: First part: the automorphlsm group of p1+2 acts transitively on pC'
and on pD. Hence it fixes x and x%°, and acts transitively on the x* (x
and y not both zero) and on the x*. But x is in the Z-span of the x*¥ and
the x*. The rest is obvious. [

Proposition 26 Representations affording the characters xP and x© have
total Chern classes c(p”) =1+ kP and

(%) = (1+ m)P <p1+§; () it
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p—1

Proof: We shall make repeated use of the identity [[(X —7) = X? — X
=0

mod p. The Chern classes of p*™ and p* are in Theorem 23. By the Whitney
formula,

p—1
c(p?) = H (14 za; + yao)
z,y=0
p—1
= H (1 +zon)” —(1+ xal)oﬁ;_l)
=0
= 1-a4"YP—1—-ay N —aay )y
Now, az(a? — ajoh ") = aPay — ayah, which is zero. Hence
— — _ — —1)2 —
(1= af ™) (af — araf )t = af0 — ™ Vaf
Therefore
e(p”) = (1= —af" V- afap!

1+ KP,
since, by induction on 7,
K = (—1)T(aq(p_1) - ag’“‘”(”‘”ag‘l + a;(p‘”) for r > 2.

For p¢, the Whitney formula gives

c(p”) = H(HZ <> 20, —l—/i—l—ZpC)

z=1
C —1+H e+ 3L ( )zamec,
i= 2
R e ,
where a;; is the coefficient of XY7 in [[(1 + 2'X + zY). There are no
z=1

terms x‘C7, with ¢ and j both positive, because

p—1
H (1+r+2°0) =01+ R)p_l — ¢! (mod p).
-1

Since X? = X mod p, we see that 17, 2P, ..., (p — 1)P are p — 1 distinct
(p — 1)-roots of 1 in Z/p?, and these two facts imply that
p—1
H(X — )= XP"' —1 (mod p?).
z=1
p—1
Therefore [ (1+27¢) = 1—¢P~!. Lemma 27 below says that a;; = 0 (mod p)
z=1
unless i + j = p — 1, in which case a;; = (—1)""'. The result is proved. "
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A .
Lemma 27 Let a;; be the coefficient of XY7 in [[(1+4 2'X + 2Y), where
z=1
1<i<p—1and0<j<p—2. Then

=) ifitj=p -1
tij = { 0 otherwise (mod p).

Proof: The result is certainly true for ¢ = 1, because a,; is the coefficient
of XY7 in1— (X +Y)P~! It is also true for j = p — 2, since a;, o is

p—1
the coefficient of XY?~% in [](2°X + 2Y), which means that a;, » = (p —

z=1
p—1
11D DF-Aa
z=1
p—1
Otherwise, if j < p—3 and ¢ > 2, then a;; + a;_141 = bj11 y. 27 L.
z=1

R it
Here b; is the coefficient of Y7 in [] (1 + 2Y"), with a;; corresponding to the
z=1

terms 2izy. .. Zjy1, and a;_; j41 to the 21_122 ... Zjy2. But for these 7, the
p—1

sum Y. z*~! is zero mod p. Therefore a;; + a;—1 ;41 =0 (mod p). L]
z=1

Proof of Theorem 22: We know the Chern classes of p” and p¢ from Pro-

position 26. For p = 3, a representation affording x* has total Chern class

(1463 (1 + k)% = ¢2)° = 1-36+3¢2— &3 —a®. Therefore by Lemma 24, we

have the claimed generators for the Chern subring. It may easily be shown

that the Chern classes of the stated representations of J; also generate. [
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