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Abstract

For a finite group G and a prime p dividing the order of G, Donald and
Flanigan conjecture that the group algebra FpG can be deformed into a
semisimple (hence rigid) algebra. We demonstrate that this implies that
for some element g of G, the centralizer CG(g) of g in G has a normal
subgroup of index p. The method is to observe that the Donald–Flanigan
deformation must be a jump. This implies that there is a non-trivial class
in H1(FpG, FpG); therefore this Hochschild cohomlogy group must be non-
trivial. Using a standard result linking Hochschild and group cohomology
one sees that some H1(CG(g), Fp) must be non-zero. The result follows
immediately.

1 Introduction

Let G be a finite group, p be a prime dividing its order |G|, and k be an al-
gebraically closed field of characteristic p. The Donald–Flanigan conjecture [2]
asserts that the group algebra kG, which is not semisimple, can nevertheless
be deformed to a semisimple algebra. It is, in a sense, a p-modular version of
Maschke’s theorem. M. Schaps [16] refined the conjecture to assert that the de-
formation could moreover be so chosen that the matric blocks of the resulting
algebra had the same dimensions as those of CG, the complex group algebra. If
true, the conjecture may have important consequences for modular representa-
tion theory. We show here that it has as a corollary a purely group theoretic
property with a simple statement: there must exist in G an element g whose
centralizer CG(g) has a normal subgroup of index p. (Equivalently, the index of
the derived group, CG(g)′, is divisible by p.) We have recently learned that, with
knowledge of this implication, Fleischmann, Janiszczak and Lempken [6] have in
fact proven a somewhat stronger assertion with the virtue that its proof can be
reduced to the case where the group is simple: If G is a finite group of order
divisible by a prime p then G contains a p-singular element g whose p-part is
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not contained in the commutator subgroup of CG(g). Their proof consists of an
efficient examination of all simple groups and they cite the result in fact as new
evidence for the Donald–Flanigan conjecture.

We will call a semisimple deformation of kG a “DF deformation”. Such a
deformation need not be unique; there may be others in addition to a “Schaps”
deformation with the correct components.

It was originally an observation of Knörr that the element g whose existence
our Corollary asserts may in fact be assumed to be p-singular, i.e., to have order
divisible by p. On the other hand it need not be a p-element (one whose order
is a power of p). For the sporadic simple Janko group J4 and p = 3, no 3-
element serves. The Rudvalis, Thompson and Tits groups Ru, Th and 2F4(2)′

also produce counterexamples, for the primes 3, 5 and 3 respectively. In all
four cases the Sylow p-subgroups are extraspecial of order p3 and exponent p.
Curiously, in M23 with p = 2 there is a suitable g which is a product of three
disjoint 7-cycles and hence has order prime to 2.

The present conjecture asserts precisely, as we shall see, that the Hochschild
cohomology group Hn(FpG,FpG) of FpG with coefficients in itself as a bimodule
is non-trivial for n = 1. Of course, the Donald–Flanigan conjecture requires that
it be non-trivial for n = 2, else there could be no deformation. But it is implicit
that a DF deformation be a jump deformation, and this implies, as we shall see,
that also H1 6= 0. The concept of a jump deformation is fundamental to both
parts of what we show. We recapitulate that theory, but first review briefly the
present state of the DF and Schaps conjectures.

2 History

The remarkable Donald–Flanigan conjecture was proven by them only for abel-
ian groups. The first subsequent progress was not until 1988 when Schaps [18]
solved the problem for groups G with cyclic Sylow p-subgroups. The theorem
was proven by the first author and Schaps [13] for G with an abelian normal
Sylow p-subgroup, by Erdmann and Schaps [5] for characteristic p = 2 when the
Sylow 2-subgroups of G are dihedral, and most recently by the first author and
Schaps [14] for the symmetric groups. It is natural to extend the problem by
considering not only deformations of the entire group algebra kG but of blocks of
that algebra, i.e., its indecomposable direct summands B. To each is associated
a defect group δ(B), but a deformation of the group algebra of δ(B) does not
automatically give a deformation of B nor conversely. Nevertheless, to date the
few cases where B has been proven to have a semisimple deformation are precisely
the cases where kδ(B) has been proven to have one. This is partly a consequence
of the observation that for these B the endomorphism ring of an indecomposable
projective of B is isomorphic to the group algebra of δ(B), so deformation of B
gives a deformation of kδ(B), cf. [4], [3] and [5]. They have shown for arbitrary p
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that every tame block with dihedral defect group has a semisimple deformation.
Another direction was initiated by Michler [15] who asked when a DF defor-

mation of a block could be lifted to a deformation which is generically a maximal
order descending modulo p to the block. He proved this for a block with cyclic
defect group. Independently, Schaps [17] proved a liftability result for p–p′ meta-
cyclic groups. A recent approach to the full problem, due to Schaps, is to con-
sider liftable deformations of Coxeter groups as deformations of Hecke algebras.
At present it appears that all groups of order less than 32 are known to have
DF deformations except the extraspecial 3-group of order 33 and exponent 3.
This group, which occurs in three of the examples in §1, may be presented as a
central extension of C3 × C3 by C3, where if c generates the central C3 and a, b
descend to generators of the quotient C3 × C3 we have aba−1b−1 = c.

3 Jump deformations

Henceforth “δ” will denote the Hochschild coboundary operator. For an expo-
sition of the algebraic deformation theory, cf. [12]; the original papers are [7, 8,
9, 10, 11]. (The observation that there can be no jump deformations when the
first cohomology vanishes is already contained in [12] but for completeness we
recapitulate the main ideas here.)

Let A be an algebra over a ring k (here not necessarily a field) with mul-
tiplication α:A × A → A. A (formal) deformation of A is a power series
αt = α+ tα1 + t2α2 + · · · where all αi are k-bilinear maps A×A→ A (extended
to be k[[t]]-bilinear) and which is formally associative, i.e., where αt(αt(a, b), c) =
αt(a, αt(b, c)), all a, b, c ∈ A. This is equivalent to having, for each n, the identity∑

i+j=n; i,j>0

{αi(αj(a, b), c)− αi(a, αj(b, c))} = δαn(a, b, c),

where δ is the Hochschild coboundary operator. In particular, δα1 = 0, so α1 ∈
Z2 = Z2(A,A), the group of Hochschild 2-cocycles. If α1 = · · · = αn−1 = 0 and
αn 6= 0 then δαn = 0 and the deformation “begins” with αn. The deformation αt

is equivalent to a second, α′
t = α + tα′

1 + t2α′
2 + · · · if there exists Φt = 1(=

idA) + tφ1 + t2φ2 + · · · where all φi are k-linear maps A→ A such that α′
t(a, b) =

Φ−1
t αt(Φta,Φtb) = Φ−1

t αt(Φt ⊗ Φt)(a⊗ b). This implies, in particular, that α′
1 =

α1 + δφ1. Thus, up to equivalence of deformations, only the class [α1] ∈ H2(A,A)
is significant, and by successive equivalences we may assume that αt begins with
an αn not a coboundary. Denote the deformed algebra (whose underlying module
is A[[t]]) with multiplication αt by At. Write k[[t]] = kt. We call αt a jump
deformation if α(1+u)t, considered as a deformation of αt over kt[[u]], is equivalent
to αt. Intuitively, a deformation “infinitely close” to αt is equivalent to it. There
must then exist Ψu = 1 + uψ1 + u2ψ2 + · · ·, where the ψi are themselves now
kt-linear maps from At to At, such that α(1+u)t = Ψ−1

u αt(Ψu ⊗ Ψu). Collecting
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powers of u, the left hand side has the form αt + uαt,1 + u2αt,2 + · · ·, where
αt,1 = tα1 +2t2α2 +3t3α3 + · · ·. But note that we must have αt,1 = δtψ1, where δt
is the Hochschild coboundary operator of the deformed algebra At. To see what
this implies we must consider both obstructions to derivations and the behaviour
of cohomology under deformation.

4 Derivations

If φ is a derivation of a Q-algebra A then exp tφ = 1+tφ+(t2/2!)φ2+· · · is a formal
automorphism, but in characteristic p > 0 we must ask when, given φ, there is
an automorphism Φt of the form 1 + tφ + t2φ2 + t3φ3 + · · ·. The corresponding
identities are then ∑

i+j=n; i,j>0

φi ^φj = −δφn.

Taking, as we may, φi = φi/i! for i < p, the obstruction to finding φp is the
cohomology class of −(φ1^φp−1+φ2^φp−2+· · ·+φp−1^φ1) (which is guaranteed
to be a cocycle) in H2(A,A). If this vanishes, then the next obstruction, which is
again in H2, is at the p2-place; if this is passed then the following is at the p3-place,
and so forth. If we have an expression of the form 1+tmφm+tm+1φm+1+· · ·+tnφn

which is an automorphism of A[t]/tn+1, then φm is necessarily a derivation, and
if mpr ≤ n it necessarily passes at least r obstructions. While in accordance with
what one expects, proofs of some of the foregoing statements are not completely
obvious: cf. [10].

5 Effect of deformations on cohomology

If At is a deformation of A, then the deformed coboundary operator δt of At can
be written as a power series δ+ tδ1 + t2δ2 + · · · where each δi maps the n-cochains
Cn = Cn(A,A) linearly into the (n + 1)-cochains. (In fact using the graded
Lie multiplication on

⊕
Cn introduced in [7], if F ∈ Cn then δF = −[α, F ]

and δiF is just −[αi, F ].) Suppose now for simplicity that k is a field. An
n-cocycle z is liftable to At if there is a series zt = z + tz1 + t2z2 + · · · with
zi ∈ Cn such that δtzt = 0; denote the space of these by LZn. It is liftable
modulo tr if δtzt ≡ 0 (mod tr); denote the module of these by Lr−1Z

n. Then
Zn = L0Z

n ⊃ L1Z
n ⊃ · · · ⊃ LZn ⊃ Bn, the coboundaries; the last inclusion

follows because every δy is liftable to δty. Now δtzt = 0 is equivalent to having
δzr = −(δ1zr−1 + δ2zr−2 + · · · + δrz). Denote the right hand side by y, the
obstruction cocycle. The obstruction to extending a lifting z+ tz1 + · · ·+ tr−1zr−1

modulo tr to one modulo tr+1 is the class [y] ∈ Hn+1. Observe that if z + tz1 +
· · · + tr−1zr−1 is a lifting modulo tr, then δt(z + tz1 + · · · + tr−1zr−1) has the
form tr(δ1zr−1 + δ2zr−2 + · · · + δrz) + higher terms, so if y is the obstruction
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cocycle to extending some lifting mod tr to one mod tr+1 then try can be lifted
to a δt-coboundary (and in particular, y itself is liftable). Such y (now in Zn+1)
will be called r-jump cocycles . The space of them is denoted JrZ

n+1, and the
union by JZn+1, so we have LZn+1 ⊃ JZn+1 ⊃ · · · ⊃ JrZ

n+1 ⊃ Jr−1Z
n+1 ⊃

· · · ⊃ J0Z
n+1 = Bn+1. Now if we extend coefficients from k[[t]] to its quotient

field k((t)), then any y ∈ JrZ
n+1 can already be lifted to a coboundary. It is

easy to see that every element of Zn(At, At) is the lifting of an element of Zn, so
over the field k((t)), we have Hn

t = Hn(At, At) = LZn/JZn, the liftable cocycles
modulo the jump cocycles. (An evident strengthening which we shall not need,
that Lr−1Z

n/LrZ
n ∼= JrZ

n+1/Jr+1Z
n+1, leads to the invariance of the Euler–

Poincaré characteristic under deformation whenever it is defined.) All we shall
need of this is the

Lemma 1 If [z] ∈ Hn(A,A) is a jump class then it is the obstruction to lifting a
cocycle in Zn−1(A,A). In particular if Hn−1(A,A) = 0 then there can be no jump
classes.

6 Implications of a jump

Suppose that αt = α+trαr+t
r+1αr+1+· · · is a jump deformation of A with [αr] 6=

0. From §3, this implies that rtrαr +(r+1)tr+1αr+1 + · · · becomes a coboundary
in At, so rαr is a jump cocycle, and hence so is αr unless we are in characteristic p
and p | r. In fact, it is then possible that αt,1 = 0, which will be the case if αt

is actually a power series in tp. In that case α(1+u)t = αt + up(tpαp + 2t2pα2p +
· · ·)+ · · ·, and Ψu might actually have begun with usψs for some s > 1. But then
Ψ−1

u αt(Ψu⊗Ψu) will begin αt+u
sδtψs+u

s+1(· · ·), and this must agree with α(1+u)t.

Suppose the r above is mp` with p |6 m so α(1+u)t = αt+u
p`

(mtmp`
αmp` +· · ·)+· · ·.

Then surely s ≤ p`, inequality being possible if δtψs = 0, and if s = p` then again
αmp` is a jump cocycle. If s < p` then ψs is a derivation of At which we may write
as a power series in t whose first non-zero term must then be a derivation of A.
Were it inner, i.e., a coboundary, then it could be lifted to a coboundary of At, and
there can be no obstruction to extending a coboundary to an automorphism—
and in fact to an inner automorphism. But that would have no effect on the
equivalence. Thus, either the first non-zero term of αt is a jump cocycle or we
have found an outer derivation of A. But in either case, we have

Lemma 2 If αt is a jump deformation of A then H1(A,A) 6= 0.

7 The corollary to the DF conjecture

Suppose again that G is a finite group, p a prime dividing |G| and k an alge-
braically closed field of characteristic p. A DF deformation of kG, if one exists,
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is necessarily a jump deformation; the deformed algebra, being semisimple, has
no cohomology in positive dimensions and therefore no further deformations. It
follows now that H1(kG, kG) 6= 0, and therefore that H1(FpG,FpG) 6= 0, since
the former is obtained from the latter just by extending coefficients.

We have now seen that if the DF conjecture is true then the Hochschild co-
homology group H1(FpG,FpG) must be non-trivial. With the following standard
theorem one can translate this requirement into group cohomology with trivial
coefficients.

Theorem 3 ([1] 2.11.2) There is an isomorphism of additive groups

Hn(FpG,FpG) ∼=
⊕

Hn(CG(g),Fp),

where the sum is over a set of representatives g of conjugacy classes in G .

Therefore there must exist a g in G for which H1(CG(g),Fp) is non-trivial. But
this is just the set of group homomorphisms from CG(g) to the additive group
of Fp, and there is a non-trivial homomorphism if and only if CG(g) has a normal
subgroup of index p. Therefore we have

Theorem 4 If the DF conjecture holds for a group G then there is a g ∈ G
whose centralizer has a normal subgroup of index p.

Note that our consequence of the DF conjecture is in a sense dual to Cayley’s
theorem that G contains an element of order p.
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