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ABSTRACT

For p an odd prime, the cohomology ring of the extraspecial p-group
of order p5 and exponent p is investigated. A presentation is obtained
for the subquotient generated by Chern classes, modulo nilradical.

Moreover, it is proved that, for every extraspecial p-group of expo-
nent p, the top Chern classes of the irreducible representations do not
generate the Chern subring modulo nilradical. Finally, a related ques-
tion about symplectic invariants is discussed, and is solved for Sp4(Fp).

INTRODUCTION

Almost all techniques for calculating the cohomology ring of an arbitrary finite
group assume prior knowledge of the cohomology of its Sylow p-subgroups.
But calculating the cohomology ring of a p-group is very difficult. The one
general method is the Lyndon–Hochschild–Serre spectral sequence of a group
extension, but this can be intractible even in very simple cases.



One family of p-groups that illustrate this difficulty particularily well are
the extraspecial p-groups of exponent p. One would expect these groups to
be well-behaved cohomologically: their proper quotients are all elementary
abelian, and their automorphism groups are unusually large. Also, the coho-
mology of the extraspecial 2-groups was calculated elegantly by Quillen [8].
However, even for the extraspecial p-group of order p3 and exponent p, the
spectral sequence of the central extension is intractible.

New techniques to compute the cohomology rings of p-groups are therefore
needed, and the extraspecial p-groups are important test cases.

For this reason, many people have investigated the cohomology of the ex-
traspecial p-groups, and have applied it to such questions as convergence of
spectral sequences and modules with periodic resolutions of large period.

For n ≥ 1 and p an odd prime, denote by Pn the extraspecial p-group
p1+2n

+ of order p2n+1 and exponent p. Much of the attention has focused on
the smallest group P1, because its cohomology is known. (See the papers
[7], [6] for integral and mod-p cohomology respectively). All generators of the
mod-p cohomology ring can be given concrete descriptions: degree 1 elements
represent homomorphisms from the group to Fp, and the other generators can
be described as transfers from proper subgroups, as images of the Bockstein
map, as Massey products, or as Chern classes of group representations.

Now let us consider the mod-p cohomology ring of an arbitrary extraspecial
p-group. Tezuka and Yagita have shown that this has the same prime ideal
spectrum as the subring generated by top Chern classes [9]. So it is very rea-
sonable to ask whether all generators of the cohomology ring can be described
using standard constructions such as transfer, Evens norm and Chern classes.
Irrespective of the answer to this question, it is worth our while to investigate
the subring generated by classes that can be thus described.

To study such a subring, we also need to be able to tell whether or not a
given cohomology class is zero. We therefore restrict our attention to coho-
mology rings modulo their nilradicals: by a well-known theorem of Quillen
(Theorem 6.2 here), non-nilpotent cohomology classes are detected by their
restrictions to elementary abelian subgroups.

Modulo nilradical, the integral cohomology of P1 is generated by Chern
classes of group representations. The same holds for mod-p cohomology, unless
p = 3. Combining these facts with the result of Tezuka and Yagita mentioned
above, it becomes clear that the Chern subring modulo nilradical is a very
important subquotient of the cohomology ring of an extraspecial p-group.

The purpose of this paper is to obtain a presentation of this subquotient
for the extraspecial p-group of order p5 and exponent p. This paper therefore
carries on from paper [5], where the subquotient was studied for arbitrary
extraspecial p-groups, and several formulae were obtained. After establishing



the main result, some corollaries are obtained. For arbitrary extraspecial p-
groups, the containment of the ring generated by top Chern classes in the
Chern subring modulo nilradical is shown to be strict. The main problem of
this paper gives rise to a natural question about symplectic invariants: this is
discussed, and one case is answered using the result.

By employing a suitable partition of the set of maximal elementary abelian
subgroups, the search for relations in the Chern subring may be pursued in
a methodical fashion. The extraspecial p-group Pn+1 is the central product
P1 ∗ Pn. As a result, there is a cohomology inflation map from Pn+1 to P1 ×
Pn. Some maximal elementary abelian subgroups of Pn+1 lift to elementary
abelian subgroups of P1 × Pn, and some do not: this is the partition. There
is one additional property of P2 that allows us to obtain a presentation of its
Chern subring modulo nilradical. Every element of the Chern subring can be
approximated by an element of the Tezuka–Yagita subring, in such a way that
the difference (the ∆ of Definition 3.2) is detected by the inflation map.

This technique lends itself to a number of generalizations that could be
used to launch an attack by induction on the Chern subrings of all extraspe-
cial groups. It is to be hoped that further research will identify the correct
generalization for this task.

The task of obtaining the Chern subring modulo nilradical for P2 can be easily
abstracted into a purely algebraic problem. The main part of the paper is taken
up in solving this algebraic problem.

Problem 0.1. For an odd prime p and a positive integer n, let En be a
2n-dimensional Fp-vector space, carrying a nondegenerate symplectic bilinear
form. Let K0, . . . , Kn−1 be indeterminates, and let Fn denote the polynomial
algebra S(E∗

n)⊗Fp Fp[K0, . . . , Kn−1].

For each maximal totally isotropic subspace I of En, there is then a unique
algebra homomorphism qI : Fn → S(I∗) which behaves on E∗

n as the restriction
map E∗

n → I∗, and sends Kr to Dr(I
∗), the Dickson invariant in the (pn−pr)th

symmetric power of I∗.

The intersection of the kernels of all the qI is an ideal in Fn; define Qn to
be the corresponding quotient algebra. Give a presentation for Qn.

A presentation forQ2 is achieved in Theorem 5.7. After that, we shall prove
in Theorem 6.3 that the Chern subring modulo nilradical for P2 is isomorphic
to Q2 ⊗Fp Fp[Z] for an indeterminate Z. Together, these constitute the main
result of the paper.



1. A REGULAR SEQUENCE

Let b denote the symplectic form En⊗FpEn → Fp, and denote by q the quotient
map Fn → Qn. Then, for each maximal totally isotropic subspace I of En,
there is a unique map q̂I : Qn → S(I∗) such that q̂Iq = qI .

Write Tn for the image of S(E∗
n) under q. Pick a symplectic basis A1, . . . ,

An, B1, . . . , Bn for En: so Ai ⊥ Aj, Bi ⊥ Bj and b(Ai, Bj) = δij. Take the
corresponding dual basis A∗

1, . . . , A∗
n, B

∗
1 , . . . , B∗

n for E∗
n. Define elements

of Tn by αi = q(A∗
i ) and βi = q(B∗

i ). Then α1, . . . , αn, β1, . . . , βn generate Tn
as an Fp-algebra. Denote by Rr(En) the element A∗

1B
∗
1
pr − A∗

1
pr

B∗
1 + · · · +

A∗
nB

∗
n
pr − A∗

n
pr

B∗
n of S(E∗

n). If the vector space En is clear from the context,
this will be shortened to Rr. Note that Rr is the b(v, F r(v)) of [3].

Theorem 1.1. (Tezuka–Yagita) The sequence R1, . . . , Rn in S(E∗
n) is a

regular sequence. The ideal generated by these elements contains Rr for all
r > 1, and is the kernel of the surjection S(E∗

n) → Tn.

Proof. See Proposition 8.2 of [3]. The h of that paper is defined to be the
codimension in En of a maximal totally isotropic subspace, and so takes the
value n here. The first two parts are explicitly stated. The last part follows,
using the Nullstellensatz, from the fact that the ideal is radical and from the
description of the variety in terms of isotropic subspaces.

2. DICKSON INVARIANTS

We now recall the salient facts about the Dickson invariants. See Chapter 8
of Benson’s book [2] for proofs.

Let V be an m-dimensional Fp-vector space. For each 0 6 r 6 m−1, there
is a Dickson invariant Dr(V ) in the (pm − pr)th symmetric power of V and

∏
v∈V

(X − v) = Xpm

+
m−1∑
r=0

(−1)m−rDr(V )Xpr

in S(V )[X]. (1)

The natural action of GL(V ) on S(V ) has as ring of invariants the polynomial
algebra Fp[D0, . . . , Dm−1]. In several papers, Dr(V ) is denoted cm,r or dm,r.

Each Dickson invariant is a polynomial in the elements of any basis for V ,
and the polynomial depends only on p, r and m. If w1, . . . , wm are elements
of an Fp-vector space W , and r < m, then Dr(w1, . . . , wm) shall denote the
evaluation at (w1, . . . , wm) of the polynomial forDr(Fmp ). The following lemma
relates this to the Dickson invariants of the space spanned by the wi. It takes
a particularily elegant form for dual spaces.



Lemma 2.1. Let V be an m-dimensional Fp-vector space, and U a subspace
of codimension `. Then, for every 0 6 r 6 m− 1,

ResU (Dr(V
∗)) =

{
Dr−`(U

∗)p
`
if ` 6 r, and

0 otherwise.

Proof. Obvious from Eqn. (1).

This paper is particularily concerned with small cases. The first three
Dickson invariants are easily calculated: D0(w) = wp−1 and

D0(w1, w2) = (w1w2
p − w1

pw2)
p−1 D1(w1, w2) =

wp
2−1

1 − wp
2−1

2

wp−1
1 − wp−1

2

. (2)

Note in particular that if we take for any m-dimensional V a non-zero element
of each 1-dimensional subspace, and multiply these together, we get an element
of S(V ) which is well-defined up to a scalar, and has (p− 1)th power D0(V ).
If m = 2 and V has basis v1, v2, then this element is v1v2

p − v1
pv2.

In Qn, define κn,r = q(Kr) for 0 6 r 6 n − 1. Then the αi, βj and κn,r
together generate the Fp-algebra Qn. Note that the algebraic independence of
the Dickson invariants, together with the definition of q, ensures that the κn,r
not only are algebraically independent over Fp in Qn, but also, no polyno-
mial in them over Fp is a zero divisor in Qn. For small values of n we will
abbreviate κn,r, denoting κ1,0, κ2,0, κ2,1 by κ, κ0, κ1 respectively.

3. PARTITION

The object of this section is to prove a result (Proposition 3.3) which allows
the search for relations in Q2 to be carried out in Q1 ⊗Q1. This is achieved
by partitioning the set of maximal totally isotropic subspaces of E2 into two
families, and for each family, determining which elements of Q2 it fails to
detect. This partition can in fact be performed in En, and so we will only
restrict ourselves to E2 when this becomes necessary.

Suppose that n = `+m. Then En is the orthogonal direct sum En = E` ⊥
Em of nondegenerate symplectic spaces E`, Em. Partition the set of maximal
totally isotropic subspaces I of En as Φ

∐
Ψ, where I ∈ Φ if and only if I is

the direct sum of (necessarily maximal) totally isotropic subspaces of E` and
Em.

Lemma 3.1. Let n = ` + m. Then the isomorphism S(E∗
n)
∼= S(E∗

` ) ⊗
S(E∗

m) induces an inflation homomorphism π∗ : Qn → Q`⊗Qm such that, for
any x ∈ Qn, we have π∗(x) = 0 if and only if q̂I(x) = 0 for all I ∈ Φ.



Proof. As Fnp ∼= F`p⊕Fmp and GL`(Fp)×GLm(Fp) 6 GLn(Fp), each Dr(Fnp )
is a polynomial in the Ds(F`p) and the Dt(Fmp ). Define π∗(κn,r) to be the
corresponding polynomial in the κ`,s⊗ 1 and the 1⊗κm,t. The rest is obvious.

Remark. The above partition is related to the fact that the extraspecial
group Pn is the central product P` ∗Pm. The inflation map corresponds to the
cohomology inflation from Pn to P` × Pm.

Definition 3.2. For a polynomial f ∈ T2[x0, x1] with coefficients in T2,
define ∆(f) ∈ Q2 by

∆(f) = f(κ0, κ1)− f(D0(α1, β1), D1(α1, β1)) ,

and define γ2 to be the element D1(α1, β1)−D1(α2, β2) of T2.

Proposition 3.3. Let f ∈ T2[x0, x1] be a polynomial with coefficients
in T2. Then the element f(κ0, κ1) of Q2 belongs to T2 if and only if there exists
t ∈ T2 such that the equation ∆(f) = tγ2 holds after inflation to Q1 ⊗Q1. If
such t does exist, then ∆(f) = tγ2 holds in Q2.

Remark. The point here in Definition 3.2 and Proposition 3.3 is that each
element of Q2 can be approximated by an element of T2 in such a way that
the difference (∆) can be analysed in Q1 ⊗Q1: that is, the difference can be
worked with easily. The main obstacle to obtaining a presentation for Qn for
general n is the current lack of such an approximation by elements of Tn.

Before proving this proposition, we shall establish two auxilliary results.
We shall work with the partition associated to the orthogonal direct sum
decomposition En = E1 ⊥ En−1, where n > 2 and E1 has basis A1, B1.

Lemma 3.4. For n > 2, let I be a maximal totally isotropic subspace of En.
Then I ∈ Ψ if and only if the restrictions of α1 and β1 are linearly independent
in I∗.

Proof. Obvious.

By the definition of Qn, the maximal totally isotropic subspaces in Φ and
Ψ combined detect every non-zero element of Qn. We shall now determine
the ideals of elements which Φ and Ψ individually fail to detect. Recall that
Tn ∼= S(E∗

n)/(R1, . . . , Rn).

Lemma 3.5.



1. The equation (α1β1
p − α1

pβ1)γn = Rn in S(E∗
n)/(R1, . . . , Rn−1) has a

unique solution γn. As in Definition 3.2, γ2 = D1(α1, β1)−D1(α2, β2).

2. Consider the ideal in Tn of classes whose image under q̂I is zero for every
I ∈ Φ. It is the principal ideal generated by α1β1

p − α1
pβ1.

3. The corresponding ideal for Ψ is also principal; it is generated by γn
(considered as an element of Tn).

Proof. Write T̂ for S(E∗
n)/(R1, . . . , Rn−1). For part 1, we have Rr(En) =

Rr(E1) +Rr(En−1). It follows from the Tezuka–Yagita theorem for En−1 that
Rn(En) lies in the ideal in S(E∗

n) generated by the Rr(En) for r < n, and the
Rr(E1) for r 6 n. Now apply the Tezuka–Yagita theorem again, this time for

E1. Hence (the image of) Rn(En) lies in the principal ideal of T̂ generated
by α1β1

p − α1
pβ1. Therefore γn exists; it is unique since Rn(En) is a non-zero

divisor in T̂ . Observing that (α1β1
p−α1

pβ1)D1(α1, β1) = α1β1
p2 −α1

p2β1, we
can verify the equation for γ2.

For part 2, observe first that q̂I(α1β1
p − α1

pβ1) is zero in S(I∗) for every
I ∈ Φ, and non-zero for every I ∈ Ψ. Since S(I∗) is an integral domain, it
follows that q̂I(γn) = 0 in S(I∗) for every I ∈ Ψ. Therefore, if t ∈ Tn satisfies
q̂I(t) = 0 for every I ∈ Φ, then tγn = 0 in Tn.

Now pick t̂ ∈ T̂ lying above t. Then for some s ∈ T̂ , t̂γn = sRn(En).
Multiplying both sides by α1β1

p − α1
pβ1 and rearranging then yields (t̂ −

s(α1β1
p − α1

pβ1))Rn = 0. Since Rn is a non-zero divisor, t̂ lies in the ideal

of T̂ generated by α1β1
p−α1

pβ1, proving part 2. The same method works for
part 3.

We can now proceed with the proof of Proposition 3.3.

Proof of Proposition 3.3. For r = 0 or 1, and I ∈ Ψ, the images under q̂I
of κr and Dr(α1, β1) both equal Dr(I

∗). So for every I ∈ Ψ, the images
under q̂I of f(κ0, κ1) and f(D0(α1, β1), D1(α1, β1)) must be equal. Therefore
if f(κ0, κ1) ∈ T2 then there exists t ∈ T2 such that

∆(f) = tγ2 . (3)

Conversely, suppose that there is a t ∈ T2 such that Eqn. (3) holds after q̂I for
every I ∈ Φ. Then Eqn. (3) holds in Q2, since each side of the equation is in
ker q̂I for every I ∈ Ψ. Hence f(κ0, κ1) ∈ T2.



4. TECHNICAL RESULTS

In light of Proposition 3.3, we want a presentation for Q1. This has genera-
tors α1, β1 and κ1,0. We shall drop the subscripts from these generators.

Proposition 4.1. The Fp-algebra Q1 is generated by α, β and κ; a suf-
ficient set of relations is κ2 = α2(p−1) − αp−1βp−1 + β2(p−1), ακ− αp = 0, and
βκ− βp = 0.

Proof. These relations are easily verified after every q̂I . Note that they
imply the relation αβp − αpβ. Therefore by Theorem 1.1, all relations in T1

are present. It only remains to prove that κ does not lie in T1. To see this,
note that κp = αp(p−1) − α(p−1)2βp−1 + βp(p−1). This is not the p-th power of
any polynomial in α and β.

In Q1 ⊗ Q1, we need to be able to distinguish the κ of the first factor
from that of the second. Write κ′, κ′′ for κ ⊗ 1, 1 ⊗ κ respectively. Let T1,1

denote the subring T1 ⊗ T1 of Q1 ⊗Q1. Both T2 and T1,1 have generators α1,
α2, β1, β2. In T1,1 however, the relations are generated by α1β1

p − α1
pβ1 and

α2β2
p − α2

pβ2.

Lemma 4.2. Suppose the polynomial f ∈ T1,1[y1, y2] has no constant term.
The coefficients of f belong themselves to a graded ring. f(κ′, κ′′) lies in the
sub T1,1-module of Q1⊗Q1 generated by κ′ and κ′′ if and only if the coefficients
in f of both y1y2 and y2

1y
2
2 have no degree zero term.

Proof. κ′rκ′′s ∈ T1,1 if and only if neither r nor s is one. Removing, for all
such (r, s), both yr+1

1 ys2 and yr1y
s+1
2 from the set of monomials in y1, y2, we are

left with 1, y1y2 and y2
1y

2
2. If δ is one of the generators of T1,1, then δκ′κ′′ and

δκ′2κ′′2 lie in the submodule in question. So it remains to show that κ′κ′′ and
its square do not. As κ′κ′′ lying there would imply that κ′2κ′′2 did too, it is
enough to show that κ′2κ′′2 is not in the T1,1-module generated by κ′ and κ′′.

Suppose that κ′2κ′′2 = gκ′ + hκ′′, with g, h ∈ T1,1. Since κ′2κ′′2 does,
gκ′ + hκ′′ must involve αp−1

1 αp−1
2 βp−1

1 βp−1
2 too. But every term in gκ′ must

involve either αp1 or βp1 , and every term in hκ′′ must involve either αp2 or βp2 .
Since the only relations in T1,1 are α1β

p
1 = αp1β1 and α2β

p
2 = αp2β2, we have

derived a contradiction.

Lemma 4.3. Suppose that u, v ∈ T1,1 satisfy uκ′ = vκ′′. Then u − v lies
in the ideal in T1,1 generated by α1α2

p − α1
pα2, α1β2

p − α1
pβ2, β1α2

p − β1
pα2

and β1β2
p − β1

pβ2.



Proof. Each of the four elements u− v in the statement satisfies the equa-
tion uκ′ = vκ′′, and so lies in the ideal in question. Conversely, define a
monomial αr11 α

r2
2 β

s1
1 β

s2
2 to be admissible if both s1 < p unless r1 = 0, and

s2 < p unless r2 = 0. Then the admissible monomials form a basis for the
Fp-vector space T1,1. In particular, u and v may be expressed in terms of this
basis.

Since uκ′ = vκ′′ with both u and v ∈ T1,1, it follows that uκ′ and vκ′′ lie
in T1,1. Hence every admissible monomial in u has either r1 or s1 positive,
and every admissible monomial in v has either r2 or s2 positive. Then uκ′

is obtained from u as follows: the coefficients remain the same, and each
monomial has r1 increased by p−1, unless r1 = 0, in which case s1 is increased
by p − 1. Similarily, vκ′′ is obtained from v by increasing r2 or s2. Since
uκ′ = vκ′′, there is an induced bijection between the admissible monomials in
u and in v, and the difference between any admissible monomial in u and the
corresponding monomial in v is divisible by one of the four elements in the
statement.

Lemma 4.4. Let f ∈ T2[x0, x1]; then, in Q1 ⊗Q1,

π∗(∆(f)) = f
(
κ′κ′′(κ′ − κ′′)p−1, κ′′(κ′ − κ′′)p−1 + κ′

p)− f(0, κ′
p
) .

Moreover, π∗(γ2) = (κ′ − κ′′)p.

Proof. The maps Q1 ⊗ Q1 → S(I∗), for all I ∈ Φ, detect the elements
of Q1 ⊗ Q1. Using Lemma 3.5 and Eqn. (2), it is straightforward to verify
that the equations π∗(γ2) = (κ′ − κ′′)p, π∗(κ0) = κ′κ′′(κ′ − κ′′)p−1, π∗(κ1) =
(κ′p+1 − κ′′p+1)/(κ′ − κ′′), π∗(D0(α1, β1)) = 0 and π∗(D1(α1, β1)) = κ′p hold
after mapping to any such S(I∗).

5. DERIVING THE RELATIONS

Lemma 5.1. Though κ1 does not belong to T2, its pth power does:

κp1 =

p∑
i=0

D1(α1, β1)
p−iD1(α2, β2)

i . (4)

Proof. Inflate to Q1 ⊗ Q1. Now, κs ⊗ κt belongs to T1,1 if and only if
neither s nor t equals 1. Then π∗(κ1) equals κp−1 ⊗ κ+ κ⊗ κp−1 modulo T1,1,
by Lemma 4.4. So κ1 6∈ T2.

If I ∈ Ψ then q̂I(D1(αi, βi)) = D1(I
∗) for i = 1, 2. Also, π∗(D1(αi, βi)) is

κ′p, κ′′p for i = 1, 2 respectively. This establishes Eqn. (4).

We now look at the T2-submodule of Q2 generated by 1 and κ1.



Proposition 5.2. Let f ∈ T2[x0, x1] be a polynomial with coefficients
in T2. The element f(κ0, κ1) of Q2 belongs to T2κ1 + T2 if and only if the
coefficients in f of x0 and, if p = 3, of x2

1 have no degree zero part.

Proof. By Proposition 3.3, f(κ0, κ1) belongs to T2κ1 + T2 if and only if
there exist a, b ∈ T2 such that the equation ∆(f) = aγ2 + b∆(x1) holds after
inflation to Q1⊗Q1. Lemma 4.4 says: this is the case if and only if there exist
a′, b′ ∈ T1,1 such that, in Q1 ⊗Q1,

f
(
κ′κ′′(κ′ − κ′′)p−1, κ′′(κ′ − κ′′)p−1 + κ′

p)− f(0, κ′
p
)

= a′(κ′ − κ′′)p + b′κ′′(κ′ − κ′′)p−1 .

Note that both sides of the equation are divisible by (κ′ − κ′′)p−1. Performing
this division on the right hand side yields a′κ′ + (b′− a′)κ′′. So by Lemma 4.2,
such a′, b′ exist if and only if the coefficients of both y1y2 and y2

1y
2
2 in

f(y1y2(y1 − y2)
p−1, y2(y1 − y2)

p−1 + yp2)− f(0, yp1)

(y1 − y2)p−1

have no zero degree term. This happens exactly when the coefficients in
f(x0, x1) of x0 and, if p = 3, of x2

1, have no zero degree part.

Lemma 5.3. Let δ ∈ q(E∗
2). Then δκ0 = δpκ1 − δp

2
.

Proof. Apply q̂I for any maximal totally isotropic subspace I. This sends δ
to some element of I∗, and κr to Dr(I

∗). Observe that the left hand side of
Eqn. (1) vanishes whenever X is an element of V .

Proposition 5.4. (δ1δ2
p− δ1pδ2) (κ1 −D1(δ1, δ2)) = 0 for all δ1, δ2 ∈ E∗.

Proof. Let I be a maximal totally isotropic subspace of E2. If q̂I(δ1), q̂I(δ2)
are linearly independent in I∗, then κ1 and D1(δ1, δ2) both map to D1(I

∗)
under q̂I . If they are linearly dependent, then q̂I(δ1δ2

p − δ1
pδ2) = 0.

We can now derive a presentation for the T2-module generated by 1 and κ1.

Lemma 5.5. The ideals J1,J2 in T2 defined as follows are equal.
J1 consists of all u ∈ T2 with uκ1 ∈ T2. Generators of J2 are α1α2

p−α1
pα2,

α1β2
p − α1

pβ2, β1α2
p − β1

pα2, β1β2
p − β1

pβ2 and α1β1
p − α1

pβ1.

Proof. By Proposition 5.4, J2 ⊆ J1. We shall show that J1 ⊆ J2. First
we reduce this to a problem in Q1 ⊗ Q1. Let u ∈ J1. Then uκ1 ∈ T2, so by
Proposition 3.3, u(κ1 − D1(α1, β1)) = vγ2 for some v ∈ T2. Now inflate to
Q1 ⊗Q1. We get π∗(u)κ′′(κ′ − κ′′)p−1 = π∗(v)(κ′ − κ′′)p. Since (κ′ − κ′′)p−1 is
a non-zero divisor in Q1 ⊗Q1, we cancel and rearrange to get π∗(u + v)κ′′ =
π∗(v)κ′. By Lemma 4.3, it follows that π∗(u) lies in the ideal in T1,1 generated
by the images under π∗ of the first four generators of J2. Since the kernel in T2

of inflation is principal, generated by the fifth generator of J2, we are done.



The following lemma will help us to describe some elements of T2 involved
in relations in Q2.

Lemma 5.6. Suppose that u ∈ Q2 satisfies q̂I(u) = 0 for all I ∈ Ψ. Then
for each t ∈ T1,1, there is a unique v ∈ Q2 such that q̂I(v) = 0 for all I ∈ Ψ
and π∗(v) = tπ∗(u). It therefore makes sense to refer to v as tu. In particular,
this result holds for u = γ2, and for u = ∆(f) for any f ∈ T2[x0, x1].

Proof. The inflation map T2 → T1,1 is surjective. Pick any t̂ ∈ T2 such
that π∗(t̂) = t. Then t̂u satisfies the requirements on v. The uniqueness part
follows from Lemma 3.1 and the definition of Qn.

We can now put the above results together to obtain a presentation for Q2.
Define polynomials f1, f2 ∈ Fp[y1, y2] to be y2

1(y
p+1
1 − yp+1

2 )/(y2
1 − y2

2), respec-
tively y2

1y
2
2(y

p−3
1 − yp−3

2 )/(y1 − y2) + 2yp1 + yp−2
1 y2

2 + 2yp2.

Theorem 5.7. A presentation for the commutative Fp-algebra Q2 consists
of six generators α1, α2, β1, β2, κ0, κ1, together with relations as follows:

α1β1
p − α1

pβ1 + α2β2
p − α2

pβ2 = 0 (5)

α1β1
p2 − α1

p2β1 + α2β2
p2 − α2

p2β2 = 0 (6)

(δ1δ2
p − δ1

pδ2) (κ1 −D1(δ1, δ2)) = 0 for δ1, δ2 ∈ {α1, β1, α2, β2} (7)

δκ0 − δpκ1 + δp
2

= 0 for δ ∈ {α1, β1, α2, β2} (8)

κp1 =

p∑
i=0

D1(α1, β1)
p−iD1(α2, β2)

i (9)

∆(x2
0) = κ′

2
κ′′

2
(κ′ − κ′′)p−2γ2 (10)

∆(x0x1) = (f1(κ
′, κ′′) + f1(κ

′′, κ′)) ∆(x1) + f1(κ
′′, κ′)γ2 . (11)

If p > 3 then

∆(x2
1) = f2(κ

′, κ′′)∆(x1) + (κ′
p−2

κ′′
2
+ κ′′

p
)γ2 (12)

If p = 3, then Eqn. (12) is replaced by the relations

∆(ε1x
2
1) = (ε1κ

′′3 + 2ε3
1κ

′′2 + 2ε7
1)∆(x1) + ε3

1κ
′′2γ2 for ε1 = α1, β1 (13)

∆(ε2x
2
1) = (2ε2κ

′3 + ε3
2κ

′2 + 2ε7
2)∆(x1) + ε7

2γ2 for ε2 = α2, β2. (14)

In fact, Eqn. (9) is a consequence of the other relations if p > 3, though this
would be hard to verify directly. Note that Eqn. (6) is redundant too: this can
be seen from above.

The only relations in T2 are the first two relations above; the first three
relations above carry all information about T2κ1 + T2.



Proof. It only remains to establish the last five relations. All are proved
using the method of the proof of Proposition 5.2. We give one example, the
case of ∆(x0x1). We have

π∗(∆(x0x1)) = κ′κ′′(κ′ − κ′′)p−1(κ′
p+1 − κ′′

p+1
)/(κ′ − κ′′) ,

and require a′, b′ ∈ T1,1 such that

a′κ′ + (b′ − a′)κ′′ = (κ′
p+2

κ′′ − κ′κ′′
p+2

)/(κ′ − κ′′)

= (κ′
p+3

κ′′ − κ′
2
κ′′

p+2 − κ′κ′′
p+3

+ κ′
p+2

κ′′)/(κ′
2 − κ′′

2
)

= f1(κ
′′, κ′)κ′ + f1(κ

′, κ′′)κ′′ .

As both f1(κ
′′, κ′) and f1(κ

′, κ′′) lie in T1,1, we are done.

6. EXTRASPECIAL p-GROUPS

The 2n-dimensional Fp-vector space En may be viewed as an elementary
abelian p-group of rank 2n. Let N be a cyclic group of order p. The nonde-
generate symplectic form b on E may be viewed as a map E×E → N . Denote
by Pn the extraspecial p-group p1+2n

+ of order p2n+1 and exponent p. There is

a central extension 1 → N → Pn
ψ→ E → 1, such that, for g1, g2 ∈ Pn, the

commutator [g1, g2] equals b (ψ(g1), ψ(g2)). The maximal elementary abelian
subgroups of Pn have p-rank n+1, and are exactly the inverse images under ψ
of the maximal totally isotropic subspaces of E.

To determine the irreducible characters of Pn, pick an embedding of the
additive group of Fp in C×. There are p2n linear characters of Pn, all of which
factor through ψ. These may be identified with the elements of the dual
space E∗

n. The p − 1 remaining irreducible characters all have degree pn and
are induced from any maximal elementary abelian subgroup of Pn. Let χ̂ be
a nontrivial linear character of N . Then for each 1 6 i 6 p − 1 there is an
irreducible character χi of Pn whose restriction to any maximal elementary
abelian subgroup M is the sum of all linear characters of M whose restriction
to N is χ̂⊗i.

For each φ ∈ E∗
n, pick a representation ρφ of Pn whose character is linear,

corresponding to φ. Let ρ1 be a representation of Pn affording the character χ1.

Definition 6.1. For any finite group G, define h∗(G) to be the quotient
of the graded commutative ring H∗(G,Fp) by its nilradical. Define ch(G) to
be the subring of h∗(G) generated by the images under the homomorphism
H∗(G,Z) → H∗(G,Fp) → h∗(G) of the Chern classes of the representations
of G.



The reader is referred to the appendix of Atiyah’s paper [1] for a concise
introduction to Chern classes of group representations. A proof of the following
theorem may be found in Chapter 8 of Evens’ book [4].

Theorem 6.2. (Quillen) Let G be a finite group, and let ξ be a class
in h∗(G). Then ξ is zero if and only if ResE ξ = 0 in h∗(E) for every elemen-
tary abelian p-subgroup E of G.

Recall that Qn is defined in terms of the polynomial algebra S(E∗
n) ⊗Fp

Fp[K0, . . . , Kn−1], denoted Fn.

Theorem 6.3. Let Z be an indeterminate. There is a unique Fp-algebra
homomorphism f : Fn ⊗Fp Fp[Z] → H∗(p1+2n

+ ,Z)⊗Z Fp which sends φ ∈ E∗
n to

c1(ρφ), sends Kr to (−1)n−rcpn−pr(ρ1), and sends Z to cpn(ρ1). This homo-
morphism induces an isomorphism f̄ : Qn ⊗Fp Fp[Z] → ch(p1+2n

+ ).

Proof. Let ρ, σ be degree one representations of Pn. Since c1(ρ ⊗ σ) =
c1(ρ)+c1(σ), the algebra homomorphism f is well-defined; clearly it is unique.

Any elementary abelian p-group A may be viewed as an Fp-vector space.
There is an isomorphism ch(A) → S(A∗) which sends the first Chern class of
any degree one representation to the corresponding element of A∗. Moreover,
ch(A) = h∗(A).

For 1 6 j 6 p − 1, let ρj be a representation of Pn which affords the
character χj. Let I be any maximal totally isotropic subspace of En, and let M
be the corresponding maximal elementary abelian subgroup of Pn. Then I∗

is the subspace of M∗ which annihilates N . Pick some γ ∈ h2(M) such that
ResN(γ) = c1(χ̂). If we restrict the total Chern class of ρj to M and apply the
Whitney sum formula, we have

ResM c(ρj) =
∏
v∈I∗

(1 + v + jγ) ,

= 1 +
n−1∑
r=0

(−1)n−rDr(I
∗) + j

(
γp

n

+
n−1∑
r=0

(−1)n−rDr(I
∗)γp

r

)
.

By Quillen’s Theorem, cpn−pr(ρj) = cpn−pr(ρ1) and cpn(ρj) = jcpn(ρ1) in
ch(Pn). Moreover, these are the only non-zero Chern classes of the induced
representations. Hence the map from H∗(Pn,Z) ⊗ Fp down to h∗(G) maps
Im(f) onto ch(Pn). Observe that Z is the only generator of Fn ⊗ Fp[Z] whose
image under ResM ◦f involves γ, and that ResM f(Z) is transcendental over
S(I∗). Therefore, we only have to show that the induced map Qn → ch(Pn)
is both injective and well-defined. But, for every y ∈ Fn and for every I, the
elements qI(y) and ResM f(y) of S(I∗) are equal. The result then follows by
Quillen’s Theorem and the definition of Qn.



Remark. Both f and f̄ double the degree of homogeneous elements.

Remark. There is one other extraspecial p-group of order p5, and it has
exponent p2. The same methods may be used to investigate its mod-p coho-
mology ring and to determine a presentation for the Chern subring modulo
nilradical. Both the calculation and the result are simpler: in fact, one of the
first Chern classes is a non-zero divisor. It is because there are fewer maximal
elementary abelian subgroups and a smaller automorphism group that this
calculation is easier. But the group is less interesting, for the same reasons.

7. A GENERAL INEQUALITY

It is the business of this section to prove that Qn always strictly contains Tn.
Specifically, we prove the following theorem.

Theorem 7.1. For every n > 1, we have κn,0 6∈ Tn. Hence cpn−1(ρ1) lies
outside the subring of ch(Pn) generated by the first Chern classes and cpn(ρ1).

Proof. Proposition 4.1 gives us the case n = 1. We shall prove the rest
of the result by considering the inflation map π∗ : Qn+1 → Q1 ⊗Fp Qn, and
showing that π∗(κn+1,0) lies outside T1 ⊗Qn for all n > 1.

The inflation map is associated to the orthogonal direct sum decomposition
En+1 = E1 ⊥ En. For each maximal elementary abelian subgroup In+1 of En+1

this induces the decomposition In+1 = I1 ⊕ In. Using this decomposition and
Eqn. (1), we can express the Dickson invariants of In+1 in terms of the Dickson
invariants for I1 and In. In particular, if we define Dn(In) = 1, then

D0(I
∗
n+1) = (D0(I

∗
1 )⊗D0(I

∗
n))

(
n∑
j=0

(−1)jD0(I
∗
1 )

pn−j−1
p−1 ⊗Dn−j(I

∗
n)

)p−1

,

whence, also defining κn,n = 1, we have

π∗(κn+1,0) = (κ⊗ κn,0)

(
n∑
j=0

(−1)jκ
pn−j−1

p−1 ⊗ κn,n−j

)p−1

. (15)

Since κr ∈ T1 if and only if r 6= 1, the right hand side of this equation equals
κ⊗ κpn,0 modulo T1 ⊗Qn.

8. SYMPLECTIC INVARIANTS

Closely related to the work of this paper is a question about symplectic invari-
ants. The symplectic group Sp2n(Fp) is by definition the group of those linear



transformations of En which preserve the nondegenerate symplectic form b.
The invariants of the action of Sp2n(Fp) on S(E∗

n) were determined by Carlisle
and Kropholler, and are described in Section 8.3 of Benson’s book [2].

The ring of invariants in S(E∗
n) is generated by R1(E

∗
n), . . . , R2n−1(E

∗
n),

Dn(E
∗
n), . . . , D2n−1(E

∗
n). Recall from Theorem 1.1 that the quotient of S(E∗

n)
by the ideal generated by the regular sequence R1(E

∗
n), . . . , Rn(E

∗
n) is Tn.

There is therefore an induced action of Sp2n(Fp) on Tn. It is natural to ask
what is the ring of invariants of this action.

By the Tezuka–Yagita Theorem, every Rr(E
∗
n) is zero in Tn. Certainly

every Dr(E
∗
n) is still invariant. But now there are other invariants as well.

Proposition 8.1. The natural action of Sp2n(Fp) on Tn has as ring of
invariants the intersection of Tn with Fp[κn,0, . . . , κn,n−1].

Proof. The symplectic group permutes the maximal totally isotropic sub-
spaces I of En transitively. In addition, for any I, every automorphism of I
may be extended to a symplectic transformation on En. Hence, for every I and
for every symplectic invariant x ∈ Tn, the element q̂I(x) of S(I∗) is invariant
under GL(I), and this invariant is independent of I. Since the Dickson in-
variants in S(I∗) generate the invariants under GL(I), it follows that x equals
some polynomial over Fp in κn,0, . . . , κn,n−1. Conversely, any such polynomial
is invariant under the action of Sp2n(Fp) on Qn.

Theorem 8.2. The ring of invariants under the natural action of Sp4(Fp)
on T2 is the subring of the polynomial algebra Fp[κ0, κ1] of polynomials whose
support contains neither any κ0κ

r
1 with r > 0 nor any κr1 with p - r. Over the

polynomial algebra Fp[κ2
0, κ

p
1], the ring of invariants is the free module generated

by 1, κ2
0κ

s
1 for 1 6 s 6 p− 1, and κ3

0κ
s
1 for 0 6 s 6 p− 1.

Proof. Let f(x0, x1) be any polynomial in Fp[x0, x1]. By Proposition 3.3,
f(κ0, κ1) belongs to T2 if and only if there exists a ∈ T2 such that

f(κ0, κ1)− f (D0(α1, β1), D1(α1, β1)) = aγ2

holds after inflation to Q1 ⊗ Q1. That is, if and only if there exists a′ ∈ T1,1

such that, in Q1 ⊗Q1,

f
(
κ′κ′′(κ′ − κ′′)p−1, κ′′(κ′ − κ′′)p−1 + κ′

p)− f(0, κ′
p
) = a′(κ′ − κ′′)p . (16)

Both sides of Eqn. (16) are divisible by (κ′ − κ′′)p−1. Doing this to the right
hand side yields a′(κ′ − κ′′). Suppose f is the monomial xr0x

s
1. If r > 2, then

f(κ0, κ1) ∈ T2. If r = 1, then the left hand side of Eqn. (16) is κ′κ′′(κ′ −
κ′′)p−1 (κ′′(κ′ − κ′′)p−1 + κ′p)

s
, not divisible by (κ′ − κ′′)p. If r = 0, then it is



(κ′′(κ′ − κ′′)p−1 + κ′p)
s − κ′sp, divisible by (κ′ − κ′′)p if and only if p | s. The

monomials xr0x
s
1 such that κr0κ

s
1 6∈ T2 all have distinct degrees when evaluated

at (κ0, κ1). Hence Fp[κ0, κ1] ∩ T2 is the subring of Fp[κ0, κ1] described in the
statement. Now use Proposition 8.1.

Remark. Using Theorem 5.7, we could in principle give expressions in
terms of the αi and βj for each generator of this ring of invariants: however,
these expressions would be very complicated. The current form of the result
is likely to be the more illuminating.
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