Dr. Henry von Wahl

I am a lecturer (akademischer Rat) in the group of Dietmar Gallistl at Friedrich Schiller University Jena.

Research area:

My research focuses on numerical methods for partial differential equations (PDEs) using advanced Finite Element Methods (FEM). My focus is, in particular, on unfitted finite elements (CutFEM), discontinuous Galerkin (DG), and high-order FEM. The applications include fluid dynamics, fluid-structure interactions, problems with moving domains, and atmospheric dynamics.


Faculty of Mathematics and Computer Science
Friedrich Schiller University Jena
Ernst-Abbe-Platz 2
07743 Jena

Room: 3301
Tel.: +49 3641 9 46121
E-mail: henry.von.wahl-at-uni-jena.de


Short CV



[1] H. von Wahl and T. Wick. A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium. Submitted, August 2023. [ bib | arXiv | PDF | Code ]
[2] S. Doppler, P. L. Lederer, J. Schöberl, and H. von Wahl. A discontinuous Galerkin approach for atmospheric flows with implicit condensation. Submitted, May 2023. [ bib | arXiv | PDF | Code ]

Peer-reviewed articles

[1] H. von Wahl and T. Wick. A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium. Comput. Methods Appl. Mech. Engrg., 415:116202, October 2023. [ bib | DOI | PDF | Code ]
[2] F. Heimann, C. Lehrenfeld, P. Stocker, and H. von Wahl. Unfitted Trefftz discontinuous Galerkin methods for elliptic boundary value problems. ESAIM Math. Model. Numer. Anal., 57(5):2803--2833, September 2023. [ bib | DOI | arXiv | PDF | Code ]
[3] H. von Wahl and T. Richter. Error analysis for a parabolic PDE model problem on a coupled moving domain in a fully Eulerian framework. SIAM J. Numer. Anal., 61(1):286--314, February 2023. [ bib | DOI | PDF | Code ]
[4] H. von Wahl and T. Richter. Using a deep neural network to predict the motion of underresolved triangular rigid bodies in an incompressible flow. Internat. J. Numer. Methods Fluids, 93(12):3364--3383, August 2021. [ bib | DOI | PDF ]
[5] C. Lehrenfeld, F. Heimann, J. Preuß, and H. von Wahl. ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations. J. Open Source Softw., 6(64):3237, August 2021. [ bib | DOI | PDF | http ]
[6] H. von Wahl, T. Richter, and C. Lehrenfeld. An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. IMA J. Numer. Anal., 42(3):2505--2544, July 2021. [ bib | DOI | PDF | Code ]
[7] H. von Wahl, T. Richter, S. Frei, and T. Hagemeier. Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data. Phys. Fluids, 33(3):033304, March 2021. [ bib | DOI | PDF | Code ]
[8] H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland, and P. Minakowski. Numerical benchmarking of fluid-rigid body interactions. Comput. & Fluids, 193:104290, October 2019. [ bib | DOI | PDF | Code ]


[1] H. von Wahl and T. Richter. An Eulerian time-stepping scheme for a coupled parabolic moving domain problem using equal order unfitted finite elements. Proc. Appl. Math. Mech., 22(1), March 2023. [ bib | DOI | PDF ]


[1] H. M. von Wahl. Unfitted Finite Elements for Fluid-Rigid Body Interaction Problems. PhD thesis, Otto-von-Guericke-Universität Magdeburg, 2021. [ bib | DOI | PDF ]
[2] H. M. von Wahl. Implicit-explicit time splitting schemes for incompressible Navier-Stokes flows. Master thesis, Georg-August Universität Göttingen, 2018. [ bib | PDF ]


Friedrich Schiller University Jena

WS 2023 Lecture Einführung in die Numerische Mathematik und das Wissenschaftliche Rechnen
WS 2023 Exercise Einführung in die Numerische Mathematik und das Wissenschaftliche Rechnen

University of Vienna

SS 2023 Lecture: 280014 VU BA-ERD-11 Mathematics II: Analysis
WS 2022 Lecture: 280007 VU BA-ERD-5 Mathematics I: Linear Algebra