[1] M. Olshanskii and H. von Wahl. Stability of instantaneous pressures in an Eulerian finite element method for moving boundary flow problems. J. Comput. Phys., 533:113983, July 2025. [ bib | DOI | PDF | Code ]
[2] S. Lee, H. von Wahl, and T. Wick. A thermo-flow-mechanics-fracture model coupling a phase-field interface approach and thermo-fluid-structure interaction. Internat. J. Numer. Methods Engrg., 126(1):e7646, January 2025. [ bib | DOI | PDF | Code ]
[3] H. von Wahl and L. R. Scott. Reliable chaotic transition in incompressible fluid simulations. Adv. Comput. Sci. Eng., 2(3):202--221, September 2024. [ bib | DOI | PDF | Code ]
[4] H. von Wahl and T. Wick. A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium. Results Appl. Math., 22:100455, May 2024. [ bib | DOI | PDF | Code ]
[5] S. Doppler, P. L. Lederer, J. Schöberl, and H. von Wahl. A discontinuous Galerkin approach for atmospheric flows with implicit condensation. J. Comput. Phys., 499:112713, February 2024. [ bib | DOI | PDF | Code ]
[6] H. von Wahl and T. Wick. A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium. Comput. Methods Appl. Mech. Engrg., 415:116202, October 2023. [ bib | DOI | PDF | Code ]
[7] F. Heimann, C. Lehrenfeld, P. Stocker, and H. von Wahl. Unfitted Trefftz discontinuous Galerkin methods for elliptic boundary value problems. ESAIM Math. Model. Numer. Anal., 57(5):2803--2833, September 2023. [ bib | DOI | PDF | Code ]
[8] H. von Wahl and T. Richter. Error analysis for a parabolic PDE model problem on a coupled moving domain in a fully Eulerian framework. SIAM J. Numer. Anal., 61(1):286--314, February 2023. [ bib | DOI | PDF | Code ]
[9] H. von Wahl and T. Richter. Using a deep neural network to predict the motion of underresolved triangular rigid bodies in an incompressible flow. Internat. J. Numer. Methods Fluids, 93(12):3364--3383, August 2021. [ bib | DOI | PDF ]
[10] C. Lehrenfeld, F. Heimann, J. Preuß, and H. von Wahl. ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations. J. Open Source Softw., 6(64):3237, August 2021. [ bib | DOI | PDF | http ]
[11] H. von Wahl, T. Richter, and C. Lehrenfeld. An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. IMA J. Numer. Anal., 42(3):2505--2544, July 2021. [ bib | DOI | PDF | Code ]
[12] H. von Wahl, T. Richter, S. Frei, and T. Hagemeier. Falling balls in a viscous fluid with contact: Comparing numerical simulations with experimental data. Phys. Fluids, 33(3):033304, March 2021. Editor's pick. [ bib | DOI | PDF | Code ]
[13] H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland, and P. Minakowski. Numerical benchmarking of fluid-rigid body interactions. Comput. & Fluids, 193:104290, October 2019. [ bib | DOI | PDF | Code ]