Operations on DNA

Solution to Knapsack Problem

Perspectives

In-vitro Molecular Computing Based on DNA Strands

An unconventional computing concept inspired by nature

PD Dr. Thomas Hinze

Brandenburg University of Technology Cottbus – Senftenberg Institute of Computer Science and Information and Media Technology

thomas.hinze@b-tu.de

In-vitro Molecular Computing Based on DNA Strands

Motivation • • • • • Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

high storage density up to

1 bit / nm³

L.M. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science 266:1021-1024, 1994

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

1 bit / nm³

2 bit per nucleotide or per base pair in strand of deoxyribonucleic acid (DNA)

L.M. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science 266:1021-1024, 1994

In-vitro Molecular Computing Based on DNA Strands

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

L.M. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science 266:1021-1024, 1994

In-vitro Molecular Computing Based on DNA Strands

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

L.M. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science 266:1021-1024, 1994

In-vitro Molecular Computing Based on DNA Strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

high storage persistence up to several thousand years

W. Miller et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387-391, 2008

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

high storage persistence up to several thousand years

under optimal environmental conditions

W. Miller et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387-391, 2008

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

high storage persistence up to several thousand years

under optimal environmental conditions

approx. 80% of genome reconstructed from >20,000 years old mammoth

W. Miller et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387-391, 2008

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

W. Miller et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387-391, 2008

In-vitro Molecular Computing Based on DNA Strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

highly efficient chemical processing by low energy consumption

L. Kari. Arrival of biological mathematics. The Mathematical Intelligencer 19(2):9-22, 1997

In-vitro Molecular Computing Based on DNA Strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

L. Kari. Arrival of biological mathematics. The Mathematical Intelligencer 19(2):9-22, 1997

In-vitro Molecular Computing Based on DNA Strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

L. Kari. Arrival of biological mathematics. The Mathematical Intelligencer 19(2):9-22, 1997

In-vitro Molecular Computing Based on DNA Strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

massive data parallelism

L.M. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science 266:1021-1024, 1994

Operations on DNA

Solution to Knapsack Problem

Perspectives

DNA as an Excellent Data Storage Medium

L.M. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science 266:1021-1024, 1994

In-vitro Molecular Computing Based on DNA Strands

Solution to Knapsack Problem

Perspectives

2.

Operations on DNA

In-vitro Molecular Computing Based on DNA Strands

Perspectives

Operations on DNA (Selection)

Gaining DNA strands

• Synthesis (oligos)

• Isolation (like plasmids or genomic DNA from organisms)

Solution to Knapsack Problem

5' -ACGGAAC-3'

Perspectives

Operations on DNA (Selection)

Gaining DNA strands

- Synthesis (oligos)
- Isolation (like plasmids or genomic DNA from organisms)

Handling DNA solutions

- Union (merge)
- Split (aliquot)

ACGGAAC

Solution to Knapsack Problem

5'-ACGGAAC-3'

Perspectives

Operations on DNA (Selection)

Gaining DNA strands

- Synthesis (oligos)
- Isolation (like plasmids or genomic DNA from organisms)

Handling DNA solutions

- Union (merge)
- Split (aliquot)

Forming and breaking hydrogen bonds

- Annealing (hybridisation)
- Melting (denaturation)

AC

Operations on DNA

Solution to Knapsack Problem

Perspectives

Operations on DNA (Selection)

Enzymatically catalysed reactions

- Ligation (concatenation).....
- Digestion (cleavage).....
- Labelling (strand end modification)
- Polymerisation (completion)......
- **PCR** (polymerase chain reaction)...

..... duplicate strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

Operations on DNA (Selection)

Enzymatically catalysed reactions

- Ligation (concatenation).....
- Digestion (cleavage).....
- Labelling (strand end modification)
- Polymerisation (completion)......
- **PCR** (polymerase chain reaction)...

Separation and analysis of DNA strands

- Affinity purification (sep. by biotin)..
- Gel electrophoresis (sep. by length)
- Sequencing (readout).....

..... duplicate strands

sort and detect strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

3.

Algorithm for Solution to the NP-hard Knapsack Problem

In-vitro Molecular Computing Based on DNA Strands

Solution to Knapsack Problem

Perspectives

Knapsack Problem

NP-hard decision problem, exponential need of resources

Definition

Given *n* natural numbers $a_1, ..., a_n$ and reference number $b \in \mathbb{N}$ Is there a subset $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Explanation

*a*₁, ..., *a*_n: weights of objects 1, ..., *n*.

Is there a possibility to pack a selection of these objects into the knapsack which exactly meets the reference weight b?

Example

In-vitro Molecular Computing Based on DNA Strands

Idea of Wetware Solution to Knapsack Problem

Brute force approach

- Encode a_1, \ldots, a_n into DNA double strands by length $(c \cdot a_i)$
- Generate all solution candidates by a controlled split-and-combine strategy
- Separate final DNA pool by length
- Detect DNA at Starter length $+ c \cdot b$ and answer yes

M. Sturm, T. Hinze. Verfahren zur Ausführung von mathematischen Operationen mittels eines DNA-Computers und DNA-Computer hierzu. Deutsches Patent DE 101 59 886 B4, IPC G06N 3/00, erteilt 2010

Operations on DNA

Solution to Knapsack Problem

Perspectives

Split-and-combine Strategy

doubles number of combinations by addition of one object

In-vitro Molecular Computing Based on DNA Strands

Simple Implementation of a Problem Instance

- n = 3 objects taken from plasmid (pQE30 cleaved with Pvull)
- *a*₁ = 719, *a*₂ = 393, *a*₃ = 270, *b* = 1112, *c* = 1
- Exponential need of resources moved from time to space
- Final sequencing of DNA band corresponding to b reveals "yes"
- Limited scalability of the algorithm due to side effects and amount of DNA

Operations on DNA

Solution to Knapsack Problem

Perspectives

Side Effects and Perturbations

prevent DNA operations from running in an ideal manner

- Loss of DNA
- Incomplete reactions
- Non-specificities
- Malformed DNA (artefacts)
- DNA damage
- Contaminations or impurities of DNA solutions
- ... (many others)

Coping with side effects is a *hard challenge* to overcome in practical *in-vitro* DNA computation. Assuming an *error rate* of 5% per operation and having a sequence of 10 operations, the *overall success rate* is merely $0.95^{10} \cdot 100 \approx 60\%$.

4

Operations on DNA

Solution to Knapsack Problem

Perspectives

Further Applications, Trends, and Perspectives

In-vitro Molecular Computing Based on DNA Strands

Solution to Knapsack Problem

Perspectives

Milestones of DNA-based Computing

- · Pioneering era after Adleman's experiment
- Refinement and improvement of techniques and encoding schemes complemented by much theoretical work

Perspectives

Milestones of DNA-based Computing

- · Pioneering era after Adleman's experiment
- Refinement and improvement of techniques and encoding schemes complemented by much theoretical work
- Addressable DNA-based memory able to store data from files

Perspectives

Milestones of DNA-based Computing

- · Pioneering era after Adleman's experiment
- Refinement and improvement of techniques and encoding schemes complemented by much theoretical work
- Addressable DNA-based memory able to store data from files
- Computing by DNA self-assembly promising clue towards freely programmable nanomachines

Operations on DNA

Solution to Knapsack Problem

Perspectives

International Molecular Computing Community

pprox 500 researchers worldwide, conference series like CMC, DNA, UC, \ldots

In-vitro Molecular Computing Based on DNA Strands

Operations on DNA

Solution to Knapsack Problem

Perspectives

Take Home Message

Living organisms comprise almost perfect DNA-based computers. We are going to learn and to adapt the underlying principles for utilisation *in vitro*. There are first successes but there is still a lot of work to do.

Operations on DNA

Solution to Knapsack Problem

Perspectives

Take Home Message

Living organisms comprise almost perfect DNA-based computers. We are going to learn and to adapt the underlying principles for utilisation *in vitro*. There are first successes but there is still a lot of work to do.

Further and more detailed information

- T. Hinze, M. Sturm. Rechnen mit DNA -Eine Einführung in Theorie und Praxis. De Gruyter, eBook, 2014
- T. Hinze. Computer der Natur. bookboon.com, eBook (for free), 2013

In-vitro Molecular Computing Based on DNA Strands