
Backtracking Membrane Systems
Unravel Stable Oscillations in
Distributed Reaction Networks

Thomas Hinze1, Thorsten Lenser2, Ines Heiland1, Stefan Schuster1

1Department of Bioinformatics at School of Biology and Pharmacy, Friedrich-Schiller University Jena
2Bio Systems Analysis Group at Department of Computer Science, Friedrich-Schiller University Jena

{hinze,thlenser,iheiland,schuster}@minet.uni-jena.de

Motivation: Impetus of Oscillations in the Sciences

Oscillations are essential for the function of numerous sys-
tems in biology as well as engineering [1, 9, 12]. A common
property of these systems lies in their necessity to synchro-
nise and coordinate inherent chemical or physical activities
based on periodically iterated trigger signals. In order to
sustain a stable oscillatory signal behaviour, a cyclic pro-
cess succession is required that is characterised by at
least one positive or negative feedback loop. The delayed
signal evaluation enables a concerted alternation between
effects caused by the process chain and counteractions
initiated by the feedback. External stimuli or stochasticity
might affect signal oscillations resulting from a process cy-
cle.
Motivated by the need for an appropriate toolbox cover-
ing description, simulation, and analysis of discontinuously
considered biological reaction processes, we extend the
concept of membrane systems [11] towards an underly-
ing backtracking mechanism able to explore the nature of
sustained oscillations including alternations in compart-
mental structure like in the following artificial example:
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In particular, we expect to gain insight into aspects of
chronobiology by reverse engineering using backtrack-
ing membrane systems. This approach can benefit from the
reduced parameter space and from the flexibility regarding
structural dynamics.

State-of-the-Art: Analysis of Oscillating Signals in
Continuous Mathematical Models

Within the domain of strictly continuous signals quantified
by real numbers, modelling and analysis of oscillating be-
haviour has been well-studied [9]. Chemical reaction net-
works assumed to reside in a homogeneous environment
give a typical example: Each species is represented by its
concentration which is allowed to vary continuously over
time. From the static network topology together with the
stoichiometry of the reactions, a corresponding ordinary
differential equation system (ODE) can be derived that
specifies the reaction rates for each species [3]. Inclu-
sion of parameterised kinetic laws accomplishes a map-
ping between species concentrations and effective reaction
rates. The resulting ODE can be tested for stability with
respect to the dynamical systems behaviour. To this end,
the eigenvalues of the Jacobian matrix obtained from the
ODE are sufficient [12]. Limit cycles indicate the oscilla-
tory behaviour in detail.

Looking Beyond: Discretisation for Capturing
Structural Dynamics

Furthermore, there are different oscillatory scenarios in bi-
ological systems. On the one hand, periodicity might also
be reflected in temporal changes of the compartmental
structure like in cell cycle [8]. On the other hand, complex
signalling molecules are often available in low concen-
trations. Both scenarios have in common to prevent pure
ODE-based modelling techniques due to the discrete man-
ner of involved key entities.

Membrane Systems: Algebraic Prerequisites

Membrane systems, pioneered by Gheorghe Păun [10,
11] and hence also called P systems, provide a dis-
crete modelling approach to describe biological reaction
systems composed of interconnected membranes. Each
membrane delimits a spatial region in which chemical

reactions can occur. Within a membrane i, molecu-
lar particles are formalised by a multiset of objects
representing its configuration Li

t at time point t.

Definition (Multiset): Let F be a set. A
multiset over F is a mapping F : F →
N ∪ {∞} that specifies the multiplicity of
each element a ∈ F .
Example: Li

t = {(A, 3), (B, 2), (C, 0), (D, 1)}
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Reaction Rules
Dedicated term-rewriting mechanisms simultaneously
execute reaction rules associated to each membrane by
application of multiset operations:

Difference: F 	 G := {(a, max(F(a)− G(a), 0)) | a ∈ F \G}
Sum: F ] G := {(a,F(a) + G(a)) | a ∈ F ∪G}

Example:
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Li
t+1 = Li

t 	 {(A, 2 · k̂), (B, 1 · k̂)} ] {(C, 1 · k̂)} with k̂ = 1

= {(A, 3), (B, 2), (C, 0), (D, 1)} 	 {(A, 2), (B, 1)} ] {(C, 1)}
= {(A, 1), (B, 1), (C, 1), (D, 1)}

Here, k̂ reflects possible effects of discretised kinetic laws.

Transportation Rules
Supplementary transportation rules control the exchange
of objects among membranes.
Example:
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Li
t+1 = Li

t 	 {(A, 2)}
= {(A, 3), (B, 2), (C, 0), (D, 1)} 	 {(A, 2)}
= {(A, 1), (B, 2), (C, 0), (D, 1)}

Lj
t+1 = ∅ ] {(A, 2)} = {(A, 2)}

Structural Rules
Structural rules afford directed manipulations of the mem-
brane structure like membrane dissolution, division, trans-
portation, or creation from molecular constituents. Accord-
ingly, capturing aspects of structural dynamics is seen as
an advantageous feature of membrane systems [2, 5, 6, 7].
Example:
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[h[i]i[j]j]h → [h[i]i]h . . . . . . update compartmental structure
Li

t+1 = Li
t ] L

j
t , L

j
t+1 = ∅ . . . . . update configurations

Ri
t+1 = Ri

t ]R
j
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t+1 = ∅ . . . . update reaction rules
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t+1 = T i

t ] T
j
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j
t+1 = ∅ . . . transportation rules

Backtracking Membrane Systems: Description and
Principle of Operation

A backtracking membrane system is an algebraic construct

Π = (V, S0, C0, ∆τ ) composed of

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .system alphabet
S0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial membrane structure
C0 . . . . . . initial configuration and rules for each membrane
M . . . . . . . . . . . . . . . . . . . . . . finite global set of structural rules
∆τ . . . . . . . . time discretisation intervall (time span 〈t, t + 1〉)

Alphabet V specifies the set of characters (symbols) from
which object identifiers (nonempty finite strings ∈ V ∗) are
formed. This way, string objects are able to express simple
complexes such as polymer chains. The initial membrane
structure S0, a sequentialised tree, comprises the spatial
membrane nesting of the entire system. Within C0, the ini-
tial specification of each membrane i ∈ {1, . . . , |C0|} is
formulated as a tuple of finite components (Li

0,R
i
0, T

i
0 ) cor-

responding to the local configuration Li
0, reaction rules Ri

0,
and transportation rules T i

0 . Multisets for educts and prod-
ucts along with a kinetic term (cf. k̂) constitute each reac-
tion in Ri

0. The dynamics of Π is based on iterated turns
reflecting the progression in discrete time steps. Each turn
follows a fixed sequence of multiset operations in a nonde-
terministic way:
1. Identify reactants simultaneously within each membrane
2. Remove all reactant objects from the system
3. Add corresponding product objects obtained from the ap-

plied reaction rules
4. Change membrane structure if necessary
5. Move objects among membranes
After each time step, all resulting membranes renew their
configurations. Together with the current topological mem-
brane structure, they form the overall configuration of the
entire system at the present point in time. The overall con-
figuration contains the whole information about the process
status of the entire system.

Identification and Analysis of Configurations
Obtained from Derivation Tree

Within each time step, the entire system nondeterministi-
cally carries out a number of transitions from a common
overall configuration into its successors. This is done be-
cause a membrane might contain too few objects to sat-
isfy all matching reaction and transportation rules. Here,
all subsets of satisfied transitions are considered sepa-
rately which can cause a combinatorial explosion of con-
figurations in the worst case. By monitoring the overall
configurations over time, a derivation tree is obtained
that provides a comprehensive data pool for further anal-
ysis by backtracking. Stable oscillations appear as re-
curring, but nonadjacent overall configurations along a path
through the derivation tree. The simple example shown be-
low demonstrates a discrete view on a reaction system with
resulting configurations by means of the repressilator, a
synthetic biological oscillator based on gene regulation [4]
whose dynamics is commonly modelled using Hill kinetics:
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[α̇] = 1− [γ]m
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