
A universal functional approach to DNA computing and
its experimental practicability

Thomas Hinze � Monika Sturm
Institute of Theoretical Computer Science � Department of Computer Science

Dresden University of Technology

Abstract
The rapid developments in the field of DNA computing reflects two substantial questions: 1. Which
models for DNA based computation are really universal? 2. Which model fulfills the requirements
to a universal lab-practicable programmable DNA computer that is based on one of these mo-
dels? We introduce the functional model DNA-HASKELL focussing its lab-practicability. This aim
could be reached by specifying the DNA based operations in accordiance to an analysis of
molecular biological processes. The specification is determined by an abstraction level that in-
cludes nucleotides and strand end labels like 5’-phosphate. Our model is able to describe DNA
algorithms for any NP-complete problem – here exemplified by the knapsack problem – as well
as it is able to simulate some established mathematical models for computation. We point out
the splicing operation as an example. The computational completeness of DNA-HASKELL can be
supposed. The idea to this contribution is based on discussions about the potential and limits of
DNA computing, in particular the practicability of a universal DNA computer.

Results
DNA-HASKELL represents a model for DNA computing whose operations were implemented in
the laboratory and contributed to the successful solution of a NP-complete problem. Both, the
description of NP-complete problem solving DNA algorithms and the simulation of computatio-
nal complete universal models is possible with DNA-HASKELL. This model is also able to include
the description of another existing algorithmic implementations reducing some side effects be-
cause of its closeness to the laboratory, so to say, these effects belong to the definitions of the
operations. Beyond DNA-HASKELL is suitable for description of established mathematical models
for DNA computing. It fills the gap between models with a high abstraction level and practical
implementations in the laboratory. The concept of DNA-HASKELL arose by direct observations of
molecular processes specifying the according functions and forming the operational semantics
of DNA-HASKELL. The computational completeness of DNA-HASKELL can be assumed by simulati-
on of Turing machines and distributed splicing systems for recursive enumerable languages.

DNA-HASKELL
The functional language DNA-HASKELL was conceived on the
base of the functional language HASKELL. The decision for a
functional language is due to the fact that the abstraction level
of a functional program is close to the level of problem speci-
fication. This quality allows an easier mathematical handling.
Only because of this property correctness proofs, verification,
and analysis of program properties are possible. DNA compu-
ting as a modern model for computations is convincing only if
a formal description of the labwork can be done.

Data structures
ASKELLDNA-H

A T C A TG

A T C G A TP B

T

A T

A

C

G

G

C

C

G T

A

T

A T

A

C

G

G

C

C

G T

AP

B

DNA strand denotation in example
single
strands
unlabeled
single
strands
labeled

5’P-ATCGAT-3’B

5’-ATCGAT-3’

3’-TAGCTA-5’

5’-ATCGCA-3’

5’-TGCGAT-3’

5’P-ATCGCA-3’

5’B-TGCGAT-3’labeled
strands
double

unlabeled
strands
double

3’B-TAGCTA-5’P

3’-TAGCGT-5’

3’-ACGCTA-5’

 3’-TAGCGT-5’B

 3’-ACGCTA-5’P

[[@,@]] ++ [[A,*],[T,*],[C,*],[G,*],[A,*],[T,*]] ++ [[@,@]]

[[@,@]] ++ [[*,T],[*,A],[*,G],[*,C],[*,T],[*,A]] ++ [[@,@]]

[[P,@]] ++ [[A,*],[T,*],[C,*],[G,*],[A,*],[T,*]] ++ [[B,@]]

[[@,B]] ++ [[*,T],[*,A],[*,G],[*,C],[*,T],[*,A]] ++ [[@,P]]

[[@,@]] ++ [[A,T],[T,A],[C,G],[G,C],[C,G],[A,T]] ++ [[@,@]]

[[@,@]] ++ [[T,A],[G,C],[C,G],[G,C],[A,T],[T,A]] ++ [[@,@]]

[[P,@]] ++ [[A,T],[T,A],[C,G],[G,C],[C,G],[A,T]] ++ [[@,B]]

[[B,@]] ++ [[T,A],[G,C],[C,G],[G,C],[A,T],[T,A]] ++ [[@,P]]

Operations
� Annealing The function ann :: Tube -> Int -> Tube

simulates the biological operation annealing. Single strands
and double strands with sticky ends anneal to each other
only when they are complementary. If so, they are forming
double strands. All combinations are generated. The sim-
pliest form is the annealing of two nucleotides that results
in a base pair. The function needs an integer number that
limits the length of the new annealed strands.

C

G C T

G A T

A

T

A

G

C

G G

A

A G A T C G G G G T

T

C

C C C C

A

TG

C

G

C

C

A

T

A

T

G

A

A G G G G A T C G G G G T C

C C C C

T

G

C

G

C

C

G

C

GA

A G G G G A T C G G G G T C

C C C C C C C C

T

CTGGGGCTAGGGGA

CCC

C

A

T

G

C

G

C

C

G

C

GA

T

A A

TT

GTTAGCTACC

GGTAGCTAA 15

� Ligation The function lig :: Tube -> Int -> Tube
simulates the biological ligation. All double strands inside
the tube can be linked to itself or to another double strand
under following conditions: The strands have compatible
complementary ends and at least one of the connected
strands has to be modified by 5’-phosphorylation. The ge-
neration of new concatenated strands will continue until
the defined maximum in length is reached.

C

G

G

C

T

A G

P

PG

PC

A T

T

CP

G

T

C

C

G

T

G

CG

G

C

CA G

C GT A

G

C

G

P C

A

G

G

C T

G

C T

A G

C

C

C

G

G

C

C

T

G

C T

A G

C

T

C

G A

C

A

T

A

C G

A

P

C

G

G

C T

A G

C T

A

A

C

P

P

A

T A C

G

G

C T

A T

C

G T

A T

A C

G T

A

T

A

T

A

G

CC

C

T

A T

A

C

G

G

C

A

A T

P

G

C

T

A T

A C

G T

A

T

A

T

A

A

C

T

C

G

T

A

C

G

T

A

C

G

G

G

C

T

A

T

G

T

A

G

C

T

A T G

P

TG

C

P T T T

A

G

C

T

A T

A

G

C

G

G

C T

A G

C T

A G

C

C

G

A

P

P

C

G

T

A

C

G

T

A

C

G

G

C T

A G

C

G

C

C

G

T

A T A

AA

A

A

C

P

P

C

G

T

A

C

G

T

A

C

G

G

C

A T

T

A G

C

C

G

C

G

T

A

CC

C

P

PT

A G

C

G

C

C

G

T

A T A

C

G

G

C T

A G

C T

A G

C

G

C

G

PT

A G

C

G

C

C

G

T

A T A

A

T

T

A G

C

G

C

C

G

T

A T A

A T

T

A G

C

C

G

C

G

T

A

G A A C C G T

G T

A T

A C

G T

A

T

A

T

A

G

P C

T

A T

A

C

G

G

C A T

CA

A

A

A

P

P

C

G

G

C T

A G

C T

A G

C

A

PT

A G

C

G

C

C

G

T

A T A

AA

A

15

� Synthesis, Melting, Labeling, SepLabel, Union, Extraction,
Cut, CuttingOut, FilterLength, and Electrophoresis comple-
te the set of operations. DNA algorithm simulations ena-
ble forecasts closed to the laboratory results, supporting
low level design, test, and optimization of algorithmic lab-
implementations.

Knapsack problem
given: ��� �������	�	��
� � and �� � .

asked: Is there a subset ���������������	� ��� with �� � � � ��� � ?

Lab-implemented example
We use a problem instance with three objects, their weights� � �! ��"��	�$# �&% " % �	�$' �&(� �) and � � ����� (. The object weights
are encoded by DNA double strands with lengths according
to the weights. The plasmid pQE30 forms the basic material. It
was cleaved by PvuII and HinP1I. The resulting fragments we-
re 5’-dephosphorylated and separated by agarose gel elec-
trophoresis, see figure A (lane1: digestion product, lane2: 50bp
marker). The bands with 719, 393, and 270bp were excised. The
DNA was extracted into separate tubes representing weights.

Starter

Starter

Starter

a1

a2

a1

a2

StarterStarter a1

Starter

Starter

a1

a2

2nd loop1st loop

Agarose gel photos

1200

100

1000

B

1

719 bp

393 bp

270 bp

750 bp

500 bp

250 bp

150 bp

A

bp

270270

393393
663393 270

719719

719 270

719 393

719 393 270

989
1112
1382

bp
2 1 2 3

A: encoded object weights, B: knapsack weights

Algorithm in DNA-HASKELL

pr
ov

id
e

D
N

A
 s

tr
an

ds
 e

nc
od

in
g

th
e

ob
je

ct
s

pr
ov

id
e

pl
as

m
id

 p
Q

E
30

de
te

ct
 k

na
ps

ac
k

w
ei

gh
t b

ge
ne

ra
te

 a
ll

po
ss

ib
le

 k
na

ps
ac

k
w

ei
gh

ts
 (

lo
op

)

T

A G

C

C

G A

G

C

T
PvuII

5’

3’

3’

5’

C

C

G

G

C

C

G
HinP1I

5’

3’

3’

5’

G

G

C

’PvuII’

Cut

’HinP1I’

Cut

’-P’
5

Labeling

a1 (=719)

CuttingOut CuttingOut

’+P’
5

Labeling Union

Union

b (=1112)

Ligation

b (=1112)

CuttingOut

Electrophoresis

[1112]

’...’

Synthesis

’...’

Synthesis

Union

3462

Annealing

a2 (=393)

sense and
antisense sequence
of pQE30

Empty list [] represents solution ’no’.
Singleton list [b] represents solution ’yes’.

The DNA algorithm for solution to the knap-
sack problem produces all nonempty combi-
nations of the input DNA double strands (5’-
dephosphorylated, end compatible) encoding� � , * � ���������+� � . Each combination contains eve-
ry � � at most once and represents a possible
knapsack weight. Starting from a „Starter“ frag-
ment (one side end compatible, other side 5’-
biotinylated), the combinations are generated
by consecutively processing operational loops.
Each loop embodies a split and combine strat-
egy, adding a new � � and doubling the number
of combinations. The DNA pool is splitted into two
halfs. One half is 5’-phosphorylated and merged
with a new � � and with the other half. A subse-
quent ligation produces new combinations. After
including all � � , a terminating fragment is added
to all combinations. A subsequent PCR with star-
ter and terminator sequences as primers extracts
all valid combinations. Whether or not a combi-
nation of the length � occured can be determi-
ned by gel electrophoresis. Figure B shows the re-
sult of a simplified example without starter becau-
se of appropriate input strand lengths.

Splicing operation
Consider an alphabet , , and two symbols $ and # not in , . A
splicing rule over , is a string - �/. � 012� 3 . # 041 # , where .�� � 1 � �,65 , �879*:7 (. For each such rule - and strings ;<� =>�	?8�	@A�B,:5 we
defineC

;2�	=�D<EGF
C
@H� ?8D if and only if ; � ; � . � 1<� ;># �I= � = � . # 1 # =�# �@ � ; � . � 1 # =�#	�I? � = � . # 1<� ;># �

Splicing operation in DNA-HASKELL

The splicing operation forms the core of all types of splicing sy-
stems and embodies an abstract formal emulation of DNA re-
combinant techniques cut with restriction enzymes (digestion)
and ligation. It is based on elements of mostly infinite sets that
express DNA strands, further named words of formal langua-
ges. The description of the splicing operation on words of for-
mal languages also leads to a generalization of the effect that
is caused by digestion and ligation. The generalization suppres-
ses certain DNA strands resp. words that can really additional
occur during the ligation process as side effects. Here, we pro-
pose a sequence of DNA-HASKELL operations that simulate the
splicing operation on linear data structures defined by a spli-
cing rule as above (using functional DNA-HASKELL syntax and
flowchart).

2

α1 2

βα

β

21

β

α1

α

1x

β1

x

2

α

1

β2yy1

x1

β

1β1x2

2

y1α 2

2

2y

α

1

x1α1β

2

y2

2

y1α 2β1x2α

α1β1
α 2β

β

α1β2
α 2β1

α1β2)

α 2β1))

splicingop :: Tube -> Tube
splicingop t = un

2

 (extr

 (combine t)

 t

 (extr

 (combine t)

2

α 2 β2’))

α1β1

α 2β2

2

α1 β1

β2α1β1α

 (un

Extraction Extraction

Cut

rest. enzym

Cut

rest. enzym

’-P’
5

Labeling

Union

maxlength

Ligation

Extraction Extraction

Union

Union

xy_pool :: Tube

maxlength :: Int

:: Dnastrand
:: Dnastrand
:: Dnastrand
:: Dnastrand

application of the function: splicingop xy_pool

combine :: Tube -> Tube
combine t = lig
 (un
 (lab
 (cut
 (extr t
 ’restriction enzym
 ’-P’
 5)
 (cut
 (extr t
 ’restriction enzym
 maxlength

)

)

’)

Contact: DNA6 Sixth International Meeting on DNA Based Computers, Leiden, The Netherlands, 2000

Dresden University of Technology J Dept. of Computer Science J Inst. of Theoretical Computer Science J D-01062 Dresden J Germany
Dipl.-Inform. T. Hinze J e-mail: hinze@tcs.inf.tu-dresden.de
Dr. M. Sturm J e-mail: sturm@tcs.inf.tu-dresden.de
Internet: http://wwwtcs.inf.tu-dresden.de/dnacomp

