Motivation

lass-Action Kinetics

Chemical RAM

Examples

Outlook

Computation by Synthetic Cell Signaling and Oscillating Processes Modelled using Mass-Action Kinetics

T.Hinze¹ R.Faßler¹ G.Escuela² B.Ibrahim³ S.Schuster¹

{thomas.hinze,gabi.escuela,stefan.schu}@uni-jena.de, raf@minet.uni-jena.de, b.ibrahim@dkfz-heidelberg.de

Friedrich Schiller University Jena ¹Department Bioinformatics at School of Biology/Pharmacy ²Bio Systems Analysis Group

³German Cancer Research Center Mol.Biol.of Centrosomes & Cilia

Computability in Europe (CiE 2009)

T. Hinze, R. Faßler, G. Escuela, B. Ibrahim, S. Schuster

Cell Signaling

Mass-Action Kinetics

Chemical RAM

Examples

Outlook

Outline

Computation by Synthetic Cell Signaling

- 1. Motivation
- 2. Chemical information processing: Cell signaling
- 3. Mass-action kinetics
- 4. Deterministic register machine (RAM)
- 5. Chemical RAM representation
 - Clock
 - Master-slave flip-flops
 - Registers
 - Program control
- 6. Example 1: Integer addition
- 7. Example 2: Maximum of three nat. numbers
- 8. Outlook and acknowledgement

Motivation

Cell Signaling

Mass-Action Kinetics

Chemical RAM

Examples

Outlook

Motivation

- Chemical/Molecular computing
- Potential high capacity and density of molecular data storage
- Exploring similarities to biological information processing
- Identification of computational units in biological systems
- Artificial evolution of reaction networks towards specific tasks

Computation by Synthetic Cell Signaling

00	000	000	0000000	00	00	
Motivation	Cell Signaling	Mass-Action Kinetics	Chemical RAM	Examples	Outl	

Biological Principles of Cell Signaling

Computation by Synthetic Cell Signaling

Motivation 00 Cell Signaling

lass-Action Kinetics

Chemical RAM

Examples 00 Outlook

Typical Information Flow in Cell Signaling

- Motif: stepwise protein activation by phosphorylation
- Cascadization of motifs for signal transduction, amplification, transformation, combination

Computation by Synthetic Cell Signaling

Typical Information Flow in Metabolic Networks

- Sequence of catalyzed reactions
- Reactants and products usually not acting as catalysts

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Mass-Action Kinetics: Background

Modeling Temporal Behavior of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating C: $V_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$

Consumption rate of C: $v_{cons}([C]) = C$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0) [A](0) [B](0)

Initial conditions: [C](0), [A](0), [B](0)

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Mass-Action Kinetics: Background

Modeling Temporal Behavior of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating C: $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$

Consumption rate of C: $\dots v_{cons}([C]) = 0$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0) [A](0) [B](0)

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Mass-Action Kinetics: Background

Modeling Temporal Behavior of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

 $A + B \xrightarrow{\hat{k}} C \quad \dots \quad Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$ $Z_C \sim [A] \cdot [B]$

Production rate generating *C*:

 $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$ Consumption rate of C: $v_{cons}([C]) = 0$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0), [A](0), [B](0)

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Mass-Action Kinetics: Background

Modeling Temporal Behavior of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \ldots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating *C*:

 $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$ Consumption rate of C:v_cons([C]) = 0 $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0), [A](0), [B](0)

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Mass-Action Kinetics: Background

Modeling Temporal Behavior of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \ldots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating *C*:

 $\begin{aligned} v_{prod}([C]) &= \hat{k} \cdot [A] \cdot [B] \\ \text{Consumption rate of } C: & \dots \cdot v_{cons}([C]) &= 0 \\ \frac{d[C]}{dt} &= v_{prod}([C]) - v_{cons}([C]) \\ \frac{d[C]}{dt} &= \hat{k} \cdot [A] \cdot [B] \\ \end{aligned}$ Initial conditions: [C](0), [A](0), [B](0)

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Mass-Action Kinetics: Background

Modeling Temporal Behavior of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$egin{array}{lll} A+B \stackrel{\hat{k}}{\longrightarrow} C & \ldots & Z_C \sim [A] ext{ and } Z_C \sim [B], ext{ so} \ & Z_C \sim [A] \cdot [B] \end{array}$$

Production rate generating C:

 $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$ Consumption rate of C:v_{cons}([C]) = 0 $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0), [A](0), [B](0) to be set

Motivation	Cell Signaling	Mass-Action Kinetics	Chemical RAM	Examples	Outlook
00	000	000	0000000	00	00

Mass-Action Kinetics: General ODE Model Chemical reaction system

results in ordinary differential equations

$$\frac{d\left[S_{i}\right]}{dt} = \sum_{\nu=1}^{h} \left(\hat{k}_{\nu} \cdot (b_{i,\nu} - a_{i,\nu}) \cdot \prod_{l=1}^{n} [S_{l}]^{a_{l,\nu}}\right) \quad \text{with} \quad i = 1, \dots, n.$$

FORSYS Partner Initiative

Computation by Synthetic Cell Signaling

Analytic solution

$$[A](t) = \left(2\hat{k}_{1}t + \frac{1}{[A](0)}\right)^{-1} \quad \text{iff} \quad [A](0) > 0 \quad \text{else} \quad [A](t) = 0$$
$$[B](t) = \left(-2\left(2\hat{k}_{1}t + \frac{1}{[A](0)}\right)\right)^{-1} + \frac{[A](0)}{2} + [B](0)$$

10

20 25

time

T. Hinze, M. Sturm. Rechnen mit DNA. ISBN 978-3-486-27530-5, Oldenbourg Wissenschaftsverlag, 2004

Computation by Synthetic Cell Signaling

T. Hinze, R. Faßler, G. Escuela, B. Ibrahim, S. Schuster

35 40 45

Register Machine (RAM)

jump label of first instruction program (finite set of instructions)

- Syntactical denotation of components $RAM = (R, L, P, \#_0)$
- finite set of jump labels $L = \{\#_0, \dots, \#_n\}$ finite set of registers $R = \{R_1, \dots, R_m\}, R_k \in \mathbb{N}$ • Available instructions
 - $\#_i$: INC $\mathbb{R}_k \#_j$ increment register \mathbb{R}_k , jump to $\#_j$
 - $\#_i$: DEC $\mathbb{R}_k \#_j$ decrement register \mathbb{R}_k , jump to $\#_j$
 - #_i:IFZ **R**_k #_j #_p
 - $\#_i$: HALT

if $R_k = 0$ jump to $\#_j$ else jump to $\#_p$ terminate program and output

- Useful assumptions
 - Consecutive indexing of jump labels and registers
 - Determinism
 - Initialization of registers at start
 - Output of all *m* registers when HALT

Computation by Synthetic Cell Signaling

Chemical RAM with Self-Reproducible Components

- 1. Construction of chemical reaction networks for boolean logic gates
- 2. Introduction of a chemical clock based on oscillating reactions
- 3. Specification of a chemical master-slave flip-flop (MSFF)
- 4. Utilize chemical master-slave flip-flop as 1-bit storage unit (initial register)
- 5. Extend registers if needed by integration of further 1-bit storage units (self-replicable components)
- 6. Transform register machine program into chemical program control (INC, DEC, IFZ, HALT)

Cell Signaling

Mass-Action Kinetics

Chemical RAM

Examples 00 Outlook

Chemical Implementation of Boolean Variables and Logic Gates

Boolean variable z represented by two correlated species Z^T and Z^F

Chemical reaction network for NAND

T. Hinze, R. Fassler, T. Lenser, P. Dittrich. Register Machine Computations on Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using Mass-Action Kinetics. International Journal of Foundations of Computer Science 20(3):411-426, 2009

Computation by Synthetic Cell Signaling

Motivatio

Cell Signaling

Mass-Action Kinetics

Chemical RAM

Examples

Outlook

A Chemical Clock

- Based on Belousov-Zhabotinsky reactions
- Cascade of auxiliary reactions for fast-switching behavior
- Two offset oscillators provide clock signals [C₁] and [C₂]

Computation by Synthetic Cell Signaling

Iotivation

Cell Signaling

lass-Action Kinetics

Chemical RAM

Examples

Outlook

Master-Slave Flip-Flop (MSFF) Reliable 1-bit storage unit, well-studied

Cell Signaling

Mass-Action Kinetics

Chemical RAM

Examples

Outlook

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

Computation by Synthetic Cell Signaling

Chemical RAM

Examples

Outlook

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

Computation by Synthetic Cell Signaling

Chemical RAM

Examples 00 Outlook

From MSFF to Register

- Four network motifs (all switching scenarios) form MSFF
- Chaining of MSFFs to build register of arbitrary length
- Assumption of MSFF as self-replicable modular unit

Computation by Synthetic Cell Signaling

Motivation 00

Cell Signaling

Ass-Action Kinetics

Chemical RAM

Examples 00 Outlook

From MSFF to Register

- Four network motifs (all switching scenarios) form MSFF
- Chaining of MSFFs to build register of arbitrary length
- Assumption of MSFF as self-replicable modular unit

Computation by Synthetic Cell Signaling

Motivation 00 Cell Signaling

Ass-Action Kinetics

Chemical RAM

Examples

Outlook

Chemical Program Control

Simple example for sequential instruction flow:

 $\#_0$: IFZ R₁ $\#_2$ $\#_1$ $\#_1$: DEC R₁ $\#_0$ $\#_2$: HALT

Computation by Synthetic Cell Signaling

Examples 00 Outlook

Chemical Program Control

Transformation scheme

instruction	reactions		
$\#_i$: INC R _h $\#_j$	$\#_i + C_2$	$\xrightarrow{k_{\mathrm{p}}}$	$\mathit{INC}_h^j + \mathit{C}_2$
	$\mathit{INC}_h^j + C_1$	$\xrightarrow{k_{\mathrm{b}}}$	$\#_j + C_1$
$\#_i$: DEC R _h $\#_j$	$\#_i + C_2$	$\xrightarrow{k_{\mathrm{p}}}$	$DEC_h^j + C_2$
	$\textit{DEC}_{h}^{j} + C_{1}$	$\xrightarrow{k_{b}}$	$\#_j + C_1$
$\#_i$: IFZ R _h $\#_j$ $\#_q$	$\#_i + C_2$	$\xrightarrow{k_{\mathrm{p}}}$	$\mathit{IFZ}_h^{j,q}+\mathit{C}_2$
	$\mathit{IFZ}_h^{j,q} + \mathit{E}_h^{\mathit{T}} + \mathit{C}_1$	$\xrightarrow{k_{s}}$	$\#_j + E_h^T + C_1$
	$\mathit{IFZ}_h^{j,q} + \mathit{E}_h^{\mathit{F}} + \mathit{C}_1$	$\xrightarrow{k_{s}}$	$\#_q + E_h^F + C_1$
$\#_i$: HALT	$\#_i + C_2$	$\xrightarrow{k_{\mathrm{p}}}$	$HALT + C_2$

C1, C2: Species providing offset clock signals

Computation by Synthetic Cell Signaling

Example 1: Integer Addition "2 + 1"

- Initialization of registers R₁ and R₂ with summands
- $R_2 := R_2 + R_1; R_1 := 0$
- Bitwise extension of registers if needed
- Simulation carried out using CellDesigner (SBML)

Computation by Synthetic Cell Signaling

Example 2: Maximum of Three Numbers "max(2, 1, 3)"

- $R_5 := max(R_1, R_2, R_3)$
- Idea: $R_4 := max(R_1, R_2); R_5 := max(R_4, R_3)$
- Full network: 142 species and 223 reactions in total

R. Fassler, T. Hinze, T. Lenser, P. Dittrich. Construction of Oscillating Chemical Register Machines on Binary Numbers using Mass-Action Kinetics. In O.H. Ibarra, P. Sosik (Eds.), Proceedings PIWMC2008 in conjunction with DNA14, ISBN 978-80-7248-468-3, pp. 11-22, Silesian University Press, 2008

Computation by Synthetic Cell Signaling

Motivation oo	Cell Signaling	Mass-Action Kinetics	Chemical RAM	Examples 00	Outlook ●○		
Outlook							

Take home message

- Pure chemical computers with self-reproducible components can reach Turing-completeness
- Oscillatory processes as universal clock generators
- Digital (based on two correlated species) vs. analog (concentration-based) encoding of data
- Chemical RAM: Framework for providing network prototypes with dedicated functionality for comparative studies (reverse engineering)

Further work

 Parallelization of chemical RAM following CREW strategy for memory access

Computation by Synthetic Cell Signaling

Motivation

Cell Signaling

lass-Action Kinetics

Chemical RAM

Examples

Outlook

Special Thanks go to ...

... my coworkers

Gabi Escuela Bio Systems Analysis Group, FSU Jena

Raffael Faßler Department Bioinformatics, FSU Jena

Bashar Ibrahim

Stefan Schuster Department Bioinformatics, FSU Jena

... the funding organization

German Federal Ministry of Education and Research, project 0315260A within Research Initiative in Systems Biology

... you for your attention. Questions?

Bundesministerium für Bildung und Forschung

Computation by Synthetic Cell Signaling