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=⇒ measurable system’s input and output on the fly
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Module as a Processing Unit for Computational Tasks

input signals

output signals

system providing input-output mapping on the fly

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

• metabolic P system (mP system) M
• P system for cell signalling modules ΠCSM

• P system for cell signalling networks ΠCSN

• ordinary differential equations (ODEs) in
conjunction with numerical solver

• transfer function (input-output mapping)
on its own, given explicitly or implicitly

• characteristic curve, given by numeric
values along with
approximation/interpolation algorithm
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P Module
• is able to fulfill an elementary computational task on the fly
• building block of an analog computer or in a control loop
• represents a container encapsulating a formal description

of its dynamical behaviour
• specifies the interface of a general real-valued system or

its approximation
• aims to bridge building blocks in systems theory and

membrane systems

More formally, a P module is a triple (↓, ↑,�) where
↓= (I1, . . . , Ii) . . . . . . . . . . indicates a list of input signal identifiers
↑= (O1, . . . ,Oo) . . . . . . indicates a list of output signal identifiers
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . underlying system specification

with or without inherent auxiliary signals
Each signal is a real-valued function over time.
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P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

P Module
• is able to fulfill an elementary computational task on the fly
• building block of an analog computer or in a control loop
• represents a container encapsulating a formal description

of its dynamical behaviour
• specifies the interface of a general real-valued system or

its approximation
• aims to bridge building blocks in systems theory and

membrane systems

More formally, a P module is a triple (↓, ↑,�) where
↓= (I1, . . . , Ii) . . . . . . . . . . indicates a list of input signal identifiers
↑= (O1, . . . ,Oo) . . . . . . indicates a list of output signal identifiers
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . underlying system specification

with or without inherent auxiliary signals
Each signal is a real-valued function over time.

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster



P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

P Module
• is able to fulfill an elementary computational task on the fly
• building block of an analog computer or in a control loop
• represents a container encapsulating a formal description

of its dynamical behaviour
• specifies the interface of a general real-valued system or

its approximation
• aims to bridge building blocks in systems theory and

membrane systems

More formally, a P module is a triple (↓, ↑,�) where
↓= (I1, . . . , Ii) . . . . . . . . . . indicates a list of input signal identifiers
↑= (O1, . . . ,Oo) . . . . . . indicates a list of output signal identifiers
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . underlying system specification

with or without inherent auxiliary signals
Each signal is a real-valued function over time.

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster



P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

P Module
• is able to fulfill an elementary computational task on the fly
• building block of an analog computer or in a control loop
• represents a container encapsulating a formal description

of its dynamical behaviour
• specifies the interface of a general real-valued system or

its approximation
• aims to bridge building blocks in systems theory and

membrane systems

More formally, a P module is a triple (↓, ↑,�) where
↓= (I1, . . . , Ii) . . . . . . . . . . indicates a list of input signal identifiers
↑= (O1, . . . ,Oo) . . . . . . indicates a list of output signal identifiers
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . underlying system specification

with or without inherent auxiliary signals
Each signal is a real-valued function over time.

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster



P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

P Module
• is able to fulfill an elementary computational task on the fly
• building block of an analog computer or in a control loop
• represents a container encapsulating a formal description

of its dynamical behaviour
• specifies the interface of a general real-valued system or

its approximation
• aims to bridge building blocks in systems theory and

membrane systems

More formally, a P module is a triple (↓, ↑,�) where
↓= (I1, . . . , Ii) . . . . . . . . . . indicates a list of input signal identifiers
↑= (O1, . . . ,Oo) . . . . . . indicates a list of output signal identifiers
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . underlying system specification

with or without inherent auxiliary signals
Each signal is a real-valued function over time.

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster



P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

P Module
• is able to fulfill an elementary computational task on the fly
• building block of an analog computer or in a control loop
• represents a container encapsulating a formal description

of its dynamical behaviour
• specifies the interface of a general real-valued system or

its approximation
• aims to bridge building blocks in systems theory and

membrane systems

More formally, a P module is a triple (↓, ↑,�) where
↓= (I1, . . . , Ii) . . . . . . . . . . indicates a list of input signal identifiers
↑= (O1, . . . ,Oo) . . . . . . indicates a list of output signal identifiers
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . underlying system specification

with or without inherent auxiliary signals
Each signal is a real-valued function over time.

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster



P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

1. Motivation and Concept of P Modules

2. Processing Units:
Components of Chemical Control Loops
• Arithmetic Functions (add, sub, mul, div, sqrt)
• Low-pass Filter
• Controllable Goodwin-type Core Oscillator

3. Phase-locked Loop (PLL):
Continuous Frequency Control

4. Simulation Studies for
Circadian Clock Systems

5. Prospectives

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster
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˙[X1] = 0
˙[X2] = 0
˙[Y ] = k1[X1] + k2[X2]− k3[Y ]

ODE solution for asymptotic steady state in case of k1 = k2 = k3:
[Y ](∞) = lim

t→∞

(
1− e−k1t

)
· ([X1](t) + [X2](t)) = [X1](0) + [X2](0)

Input-output mapping: [Y ] = [X1] + [X2]
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Non-negative Subtraction
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˙[X1] = ˙[X2] = 0
˙[Y ] = −k2[Y ][Z ]− k1[Y ] + k1[X1]
˙[Z ] = k1[X2]− k2[Y ][Z ]

ODE solution for asymptotic steady state in case of k1 = k2 > 0:

[Y ](∞) =

{
[X1](0)− [X2](0) iff [X1](0) > [X2](0)
0 otherwise

Input-output mapping: [Y ] = [X1]−(≥0) [X2]
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Multiplication
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˙[X1] = 0
˙[X2] = 0
˙[Y ] = k1[X1][X2]− k2[Y ]

ODE solution for asymptotic steady state in case of k1 = k2 > 0:
[Y ](∞) = lim

t→∞

(
1− e−k1t

)
· ([X1](t) · [X2](t)) = [X1](0) · [X2](0)

Input-output mapping: [Y ] = [X1] · [X2]
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Division
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˙[X1] = 0
˙[X2] = 0
˙[Y ] = k2[X2]− k1[X1][Y ]

ODE solution for asymptotic steady state in case of k1 = k2 > 0:

[Y ](∞) =

 lim
t→∞

((
1− e−k1t

)
· [X2](t)
[X1](t)

)
iff [X1](t) > 0

lim
t→∞

(∫
k2[X2](t) dt

)
otherwise

Input-output mapping: [Y ] = [X2]/[X1] iff [X1] > 0
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Square Root
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ODE solution for asymptotic steady state in case of k1 = 2k2 > 0:
[Y ](∞) = lim

t→∞

(√
[X ](t) · tanh(k1t

√
[X ](t))

)
Input-output mapping: [Y ] =

√
[X ](0)
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Low-pass Filter
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˙[X1] = k1[X ]− k2[X1]
˙[X2] = k2[X1]− k3[X2]

...
˙[X n−1] = kn−1[Xn−2]− kn[Xn−1]

˙[Y ] = kn[Xn−1]− kn+1[Y ]
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Low-pass Filter: Bode Plot as Characteristic Curve

frequency in 1/s
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slope
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Magnitude dB = 10 · lg
(

amplitude of output signal
amplitude of input signal

)
• Signals affected by smoothing delay throughout cascade
• Oscillation waveform harmonisation into sinusoidal shape
• Global filter parameters:

passband damping, cutoff frequency, slope
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Controllable Goodwin-type Core Oscillator
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Core Oscillator: Dynamical Behaviour

˙[X ] =
a

A + K1[Z ]2
− k2[X ]

K2 + [X ]

˙[Y ] = k3[X ]− k5[Y ]− k4[Y ]

K4 + [Y ]

˙[Z ] = k5[Y ]− k6[Z ]

K6 + [Z ]

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mit
Nachlaufsynchronisation. Diploma thesis, 2011
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Core Oscillator: Dynamical Behaviour
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• Velocity parameter k6 of Z degradation notably influences
oscillation frequency

• Period control coefficients assigned to each reaction
quantify influence on frequency

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster
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1. Motivation and Concept of P Modules
2. Processing Units:

Components of Chemical Control Loops

3. Phase-locked Loop (PLL):
Continuous Frequency Control
• Chronobiology
• Circadian Clocks and Entrainment
• General Scheme of a Control Loop
• Scheme of a Phase-locked Loop
• Model of a Chemical Frequency Control

Based on PLL

4. Simulation Studies for
Circadian Clock Systems

5. Prospectives

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster
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Chronobiology

science of biological rhythms and clock systems

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster
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Circadian Clock
• Undamped biochemical oscillation
• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions
(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli
(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range
• Reaction systems with at least one feedback loop

=⇒ Biological counterpart of frequency control system
Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster
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General Scheme of a Simple Control Loop

u(t) = C(D(w(t),y(t)))

controller

actuator

plant

sensor

x(t) = P(v(t))

y(t) = F(x(t))v(t) = A(u(t))

stimulus

external

system output

v(t)

u(t)
y(t)

w(t)

x(t)
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Scheme of a Phase-locked Loop

e x t e r n a l  r e f e r e n c e  o s c i l l a t o r  r e f e r e n c e

e ( t )

p d ( t )

x ( t )

w i t h  p e r i o d  �( p ) ,
e ( t )  a f f e c t s  p l

P h a s e  d e t e c t o r
e . g .  M u l t i p l i e r
 
p d ( t ) = f ( t ) * x ( t )

f ( t )

L o o p -
f i l t e r

O s c i l l a t o r
e r r o r  s i g n a l :  
p h a s e  d i f f e r e n c e
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Scheme of a Phase-locked Loop

+
e ( t )

p d ( t )

x ( t )f ( t )

G o o d w i n -
O s c i l l a t o r

+
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Model of a Chemical Frequency Control Based on PLL
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length of 0.61 days)

cutoff frequency: 0.000019  1/s
(corresponds to period
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1. Motivation and Concept of P Modules
2. Processing Units:

Components of Chemical Control Loops
3. Phase-locked Loop (PLL):

Continuous Frequency Control

4. Simulation Studies for
Circadian Clock Systems
• Period Lengths subject to Constant Ext. Stimulus
• Time to Entrainment to Different Period Lengths
• Time to Entrainment to Different Initial Phase Shift
• Best Case and Worst Case Entrainment

5. Prospectives

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster
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Period Lengths subject to Constant External Stimulus

constant external stimulus [E]
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Increase of external stimulus’ species concentration [E ]
decreases period (accelerates oscillation)

Chemical Clock Frequency Control Based on P Modules T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster



P Modules Processing Units Phase-locked Loop Simulation Studies Prospectives

Time to Entrainment to Different Period Lengths

period length (h) of external stimulus [E]
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Time to Entrainment to Different Initial Phase Shifts

initial phase shift (°) between external stimulus [E] and core oscillator output [Z]
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Best Case and Worst Case Entrainment
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1. Motivation and Concept of P Modules
2. Processing Units:

Components of Chemical Control Loops
3. Phase-locked Loop (PLL):

Continuous Frequency Control
4. Simulation Studies for

Circadian Clock Systems

5. Prospectives
• Conclusions and Open Questions
• Acknowledgements
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Conclusions
• Chemical frequency control can utilise PLL
• Prototypic modelling example for

entrainment of circadian clockworks
• Chemical processing units in minimalistic manner
• Variety of chemical implementations
• Modularisation in (bio)chemical reaction systems

Some open questions
• Identification of in-vivo counterparts
• Replacement of individual processing units

(like different core oscillators)
• Balancing advantages and limitations of the PLL approach
• Inclusion of temperature entrainment (by Arrhenius terms)
• Alternative concepts of frequency control
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