Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Categorised Counting Mediated by Blotting Membrane Systems for Particle-based Data Mining and Numerical Algorithms

<u>Thomas Hinze^{1,2}</u> Konrad Grützmann³ Benny Höckner¹ Peter Sauer¹ Sikander Hayat⁴

¹Brandenburg University of Technology Cottbus Institute of Computer Science and Information and Media Technology ²Friedrich Schiller University Jena ³Helmholtz Centre for Environmental Research Leipzig ⁴Harvard Medical School Boston

thomas.hinze@tu-cottbus.de

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (I)

1. Mixture of particles like reactive or labelled molecules

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (II)

2. Spatial separation of particles on a grid according to molecular attributes

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (II)

2. Spatial separation of particles on a grid according to molecular attributes

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (II)

2. Spatial separation of particles on a grid according to molecular attributes

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (II)

Separation driven by

- electrical forces (electrophoresis, northern blot)
- chemical labels or bonds (microarray, immobilisation techniques)
- mechanical forces (centrifugation, sieve)

2. Spatial separation of particles on a grid according to molecular attributes

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (II)

Separation driven by

- electrical forces (electrophoresis, northern blot)
- chemical labels or bonds (microarray, immobilisation techniques)
- mechanical forces (centrifugation, sieve)
- transportation (intracellular system)

2. Spatial separation of particles on a grid according to molecular attributes

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (III)

overlapping clusters/categories by particle attributes

3. Identification of particle *clusters* on the grid or *categories* of particles (overlapping or non-overlapping)

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (IV)

4. *Counting* or *scoring* of particles within each cluster/category

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting – Productive and Simple Principle (V)

maximum ratio: green/red with 1112/72 approx. 15.4

5. Generate *response* resulting from numerical analysis coinciding with question(s) of interest

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting as Computation

- Input: grid coordinates of all particles under study
- Output: final response resulting from scores or counts

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting as Computation

- Input: grid coordinates of all particles under study
- Output: final response resulting from scores or counts

Utilisation

- Tremendous data reduction keeping essential information
- Support of *data mining* strategies for applications in bioinformatics, especially in image evaluation
- Tool for performing *unconventional computing*
- Experimental setup for *algorithmic design* inspired by placement of particles
- Promising aspect in *applications of membrane systems* and its underlying modelling formalism

Particle-based Numerical Integration

Electrophoresis

An Example of Spatial Blotting in Nature

- Embryonic pattern in drosophila melanogaster forms a 7×4 -grid
- 28 clusters with specific cytokine combinations
- Cell differentiation and proliferation during maturation

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

- 1. Motivation and Principle of Blotting
- 2. Blotting Membrane Systems
 - Definition
 - Toy Example: Approximation of Constant $\pi \approx 3.14$
- 3. Particle-based Numerical Integration
- 4. Electrophoresis: A Molecular Bucket Sort

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, r)$$

Particles

Larbitrary set of available labels

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, \mathbf{r})$$

Particles

Larbitrary set of available labels $P \subset \mathbb{R} \times \mathbb{R} \times L$ final set of particles, each of them specified by grid position and label

T. Hinze, K. Grützmann, B. Höckner, P. Sauer, S. Hayat

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, r)$$

Particles

Larbitrary set of available labels $P \subset \mathbb{R} \times \mathbb{R} \times L$ final set of particles, each of themspecified by grid position and label

Categories

C arbitrary set of available categories either defined explicitly or obtained implicitly as result of a classification over *P*

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, r)$$

Particles

Larbitrary set of available labels $P \subset \mathbb{R} \times \mathbb{R} \times L$ final set of particles, each of them specified by grid position and label

Categories

C arbitrary set of available categories either defined explicitly or obtained implicitly as result of a classification over *P* $B_1 \subseteq P$

: entirety of blots, each of them $B_{|C|} \subseteq P$ specified by the accumulated particles

T. Hinze, K. Grützmann, B. Höckner, P. Sauer, S. Hayat

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, \mathbf{r})$$

Particles

Larbitrary set of available labels $P \subset \mathbb{R} \times \mathbb{R} \times L$ final set of particles, each of them specified by grid position and label

Categories

C arbitrary set of available categories either defined explicitly or obtained implicitly as result of a classification over *P*

 $B_1 \subseteq P$

Scores and response

 $S: \mathcal{C} \longrightarrow \mathbb{N}$. multiset subsuming the score values over all categories

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, r)$$

Particles

Larbitrary set of available labels $P \subset \mathbb{R} \times \mathbb{R} \times L$ final set of particles, each of them specified by grid position and label

Categories

C arbitrary set of available categories either defined explicitly or obtained implicitly as result of a classification over *P*

 $B_1 \subseteq P$

: entirety of blots, each of them $B_{|C|} \subseteq P$ specified by the accumulated particles

Scores and response

 $S: C \longrightarrow \mathbb{N}$. multiset subsuming the score values over all categories R arbitrary set specifying the response domain

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Definition Blotting Membrane System Π

$$\square = (P, L, C, B_1, \dots, B_{|C|}, S, R, \mathbf{r})$$

Particles

Larbitrary set of available labels $P \subset \mathbb{R} \times \mathbb{R} \times L$ final set of particles, each of them specified by grid position and label

Categories

C arbitrary set of available categories either defined explicitly or obtained implicitly as result of a classification over *P*

 $B_1 \subseteq P$

Scores and response

 $S: C \longrightarrow \mathbb{N}$. multiset subsuming the score values over all categories R arbitrary set specifying the response domain $r: \mathbb{N}^{|C|} \longrightarrow R$ response function

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Toy Example: Approximation of Constant $\pi \approx$ 3.14 Idea

Choose a square-shaped underlying grid with Cartesian coordinates, centered point of origin, unit length 1

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Toy Example: Approximation of Constant $\pi \approx 3.14$ Idea

Inscribe a circle with radius 1 Circle and square form overlapping categories on the grid

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Toy Example: Approximation of Constant $\pi \approx 3.14$ Idea

Place a huge number of **particles** on the grid randomly in spatial homogeneity

Particle-based Numerical Integration

Electrophoresis

Toy Example: Approximation of Constant $\pi \approx 3.14$

Algorithmic design

- Circle with radius 1 covers area of $\pi = 3.14159265...$
- Square constitutes 4 surface units on the grid
- Number of particles acts as measured value for circle area and square area
- As an approximation, we obtain:

- π number of particles placed within the circle
- 4 $\overline{}$ number of particles in total on the whole grid

Categorised Counting Mediated by Blotting Membrane Systems

1

Blotting Membrane Systems 00000000

Toy Example: Approximation of Constant $\pi \approx 3.14$

Blotting Membrane System

$$\Pi = (P, L, C, B_1, \dots, B_{|C|}, S, R, r) \text{ with}$$

$$L = \{I\}$$

$$P = \{(0.70191, -0.21355, I), \dots, (-0.45160, 0.52241, I)\}$$

$$C = \{\odot, \Box\}$$

$$B_{\odot} = \{(x, y, I) \mid (x, y, I) \in P \land x^2 + y^2 \le 1\}$$

$$B_{\Box} = \{(x, y, I) \mid (x, y, I) \in P \land |x| \le 1 \land |y| \le 1\}$$

$$S(c) = |B_c| \forall c \in C$$

$$R = \mathbb{R}$$

$$r(S) = 4 \cdot \frac{S(\odot)}{S(\Box)}$$

Toy Example: Approximation of Constant $\pi \approx 3.14$

Results

<i>P</i>	$S(\odot)$	$S(\boxdot)$	rational approx. r of π
10,000	7,928	10,000	<u>3.1</u> 712 (2 reliable digits)
1,000,000	785,502	1,000,000	<u>3.14</u> 21 (3 reliable digits)
100,000,000	78,542,447	100,000,000	3.1417 (4 reliable digits)

- Ascending number of particles → higher accuracy of the approximation
- 100-fold increase of the total particle number to obtain one additional reliable digit
- Slow convergence behaviour due to two-dimensional nature of experimental setting
- Numerical precision of particle coordinates needs to be adapted as well if needed

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

- 1. Motivation and Principle of Blotting
- 2. Blotting Membrane Systems
- 3. Particle-based Numerical Integration
 - Approximate Definite Integral
 - Periodical Cicada's Life Cycle
- 4. Electrophoresis: A Molecular Bucket Sort

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Enhancing Previous Idea for Numerical Integration

Algorithmic design

- Area below real-valued function
 f : ℝ → ℝ₊ to be integrated
 numerically within range [a, b]
- Grid forms rectangle by height h and width b – a
- Number of particles acts as measured value for area
- As an approximation, we obtain:

 $\frac{\int_{a}^{b} f(x) dx}{h \cdot (b-a)} = \frac{\text{number of particles placed below the function course of f}}{\text{number of particles in total on the whole grid}}$

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

17-years and 13-years Periodical Cicadas with Synchronous Life Cycle

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

How Do Cicadas Estimate Period of 17 or 13 Years?

• No external stimulus with natural period of 17 or 13 years known up to now

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

How Do Cicadas Estimate Period of 17 or 13 Years?

- No external stimulus with natural period of 17 or 13 years known up to now
- Molecular mechanism to precisely measure the passage of 17 (or 13) years?

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

How Do Cicadas Estimate Period of 17 or 13 Years?

- No external stimulus with natural period of 17 or 13 years known up to now
- Molecular mechanism to precisely measure the passage of 17 (or 13) years?
- How to keep mechanism simple and evolutionary adaptable to variety of time periods?

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

How Do Cicadas Estimate Period of 17 or 13 Years?

- No external stimulus with natural period of 17 or 13 years known up to now
- Molecular mechanism to precisely measure the passage of 17 (or 13) years?
- How to keep mechanism simple and evolutionary adaptable to variety of time periods?
- Possible annual stimulus: availability of sap in ambient root capillares

Blotting Membrane Systems

How Do Cicadas Estimate Period of 17 or 13 Years?

- No external stimulus with natural period of 17 or 13 years known up to now
- Molecular mechanism to precisely measure the passage of 17 (or 13) years?
- How to keep mechanism simple and evolutionary adaptable to variety of time periods?
- Possible annual stimulus: availability of sap in ambient root capillares

Speculative idea: chemical integrator equipped with a threshold for final alert

Categorised Counting Mediated by Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Accumulation of Byproduct Molecules in a Vesicle

Byproduct molecules successively from metabolism in sap digestion

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Threshold Exceeded: Release of Trigger Molecules

- Vesicle burst
- Generation and release of trigger molecules into environment
- Trigger molecules mark blots in the soil locating mature cicadas

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Synchronisation Fine Tuning by Trigger Molecules

- · Cicada also perceives trigger molecules from others
- Possible special form of quorum sensing
- Blotting membrane system identifies number of mature cicadas from an fluorescence image of the soil

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Blotting Membrane System for Image Evaluation

- Plan view of soil with fluorescent molecules taken as grid
- Identification of mature cicadas by corresponding blots
- Response: number of mature cicadas (here 2 out of 4)
- For detailed system's description please see paper

Blotting Membrane Systems

Particle-based Numerical Integration

- 1. Motivation and Principle of Blotting
- 2. Blotting Membrane Systems
- 3. Particle-based Numerical Integration
- 4. Electrophoresis: A Molecular Bucket Sort
 - Principle and Gel Image Generation
 - Image Evaluation

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Electrophoresis: A Molecular Bucket Sort

Spatial Separation of Electrically Charged Molecules like DNA by Weight

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Electrophoresis: A Molecular Bucket Sort

Spatial Separation of Electrically Charged Molecules like DNA by Weight

Categorised Counting Mediated by Blotting Membrane Systems

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Electrophoresis: A Molecular Bucket Sort

Spatial Separation of Electrically Charged Molecules like DNA by Weight

m......weight of individual charged molecule (~ DNA strand length)

Further parameters for gel running conditions

 $E \dots$ electrical field from DC voltage and distance between electrodes $\eta \dots$ viscosity, average pore size and density in gel $G \dots \dots$ global zooming factor

Function s derived from proximated parity between friction to be overcome by electrical force

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

An Electrophoresis Gel Image for Evaluation

- Gel image resulting from DNA separation by strand lengths
- Need of automatic image evaluation
- DNA strand lengths present in sample?
- Typical application scenario in bioinformatics
- Utilisation of a blotting membrane system

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Image Evaluation using Blotting Membrane System

- Dithering of gel image produces variety of individual dots
- Each dot comes with grid coordinates (x, y)
- Definition of buckets corresponding to DNA bands (clusters)
- Each dot considered as a particle for categorised counting
- Blotting membrane system's response provides buckets filling

Blotting Membrane Systems

Particle-based Numerical Integration

Electrophoresis

Take Home Message

Blotting membrane systems developed mainly to support image evaluation in bioinformatics and molecular biology

Further work

- System extension in order to capture dynamics
- Incorporation of distinct classification methods
- Exploit computational capacity
- Provide larger pool of advantageous algorithms

Particle-based Numerical Integration

Electrophoresis

Acknowledgements to my Team Colleagues

Categorised Counting Mediated by Blotting Membrane Systems