
Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase-locked Loops for Chemical Control of
Oscillation Frequency

A prototype of biological clocks and their entrainment by light?

Thomas Hinze1,2 Benedict Schau1 Christian Bodenstein1

1Friedrich Schiller University Jena
Department of Bioinformatics at School of Biology and Pharmacy

Modelling Oscillatory Information Processing Group
2Saxon University of Cooperative Education, Dresden

{thomas.hinze,christian.bodenstein}@uni-jena.de

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein



Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Human Daily Rhythm: Trigger and Control System
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Chronobiology

science of biological rhythms and clock systems
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Circadian Clock
• Sustained biochemical oscillation (endogenous rhythm)
• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions
(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli
(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range
• Reaction systems with at least one feedback loop

pe
rtu
rb
at
io
n

c
o
n
c
e
n
tr
a
ti
o
n

s
u
b
s
tr
a
te

time

=⇒ Biological counterpart of frequency control system
Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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General Scheme of a Simple Control Loop

u(t) = C(D(w(t),y(t)))

controller

actuator

plant

sensor

x(t) = P(v(t))

y(t) = F(x(t))v(t) = A(u(t))

stimulus

external

system output

v(t)

u(t)
y(t)

w(t)

x(t)
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Frequency Control using Phase-locked Loop

coupled
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global feedback path
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(loop filter for
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signal comparator
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output

signal
error
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external

Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Control
by Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.
Computational Intelligence and Neuroscience 2011:262189, 2011
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Combine Reaction Network Modules

affects
frequency

signal
tuning

signal
output
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(reference)
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network
candidate 1

network
candidate 1

oscillator
candidate 1

T. Hinze, C. Bodenstein, I. Heiland, S. Schuster. Capturing Biological Frequency Control of Circadian Clocks by
Reaction System Modularization. ISSN 0926-4981, ERCIM News 85:27-29, 2011
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Mass-action Reaction Kinetics at a Glance
Modeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant
collisions Z proportional to
reactant concentrations
(Guldberg 1867)

A + B k̂−→ C . . . . ZC ∼ [A] and ZC ∼ [B], so
ZC ∼ [A] · [B]

Production rate generating C:
vprod([C]) = k̂ · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0
d [C]
d t = vprod([C])− vcons([C])

d [C]
d t = k̂ · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)
to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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Mass-action Kinetics: General ODE Model
Chemical reaction system

a1,1S1 + a2,1S2 + . . .+ an,1Sn
k̂1−→ b1,1S1 + b2,1S2 + . . .+ bn,1Sn

a1,2S1 + a2,2S2 + . . .+ an,2Sn
k̂2−→ b1,2S1 + b2,2S2 + . . .+ bn,2Sn

...

a1,hS1 + a2,hS2 + . . .+ an,hSn
k̂h−→ b1,hS1 + b2,hS2 + . . .+ bn,hSn,

results in ordinary differential equations (ODEs)

d [Si ]

d t
=

h∑
ν=1

(
k̂ν · (bi,ν − ai,ν) ·

n∏
l=1

[Sl ]
al,ν

)
with i = 1, . . . ,n.
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Mass-action vs. Saturation Kinetics
Kinetics Activation (rate law) Repression (rate law)

Mass-action
(no saturation)

v = k · [S]
−

Michaelis-Menten
(saturation)

v = K · [S]
T+[S]

v = K ·
(

1− [S]
T+[S]

)

Higher-Order Hill
(saturation)

v = K · [S]n

T+[S]n
v = K ·

(
1− [S]n

T+[S]n

)

• Michaelis Menten: Typical enzyme kinetics
• Higher-order Hill (n ≥ 2): Typically for gene expression

using sigmoidal transfer function

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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Plant: Controllable Core Oscillator

coupled
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Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Control
by Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.
Computational Intelligence and Neuroscience 2011:262189, 2011
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Controllable Goodwin-type Core Oscillator
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T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency
Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,
to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011
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Core Oscillator: Dynamical Behaviour

˙[X ] =
a

A + K1[Z ]2
− k2[X ]

K2 + [X ]

˙[Y ] = k3[X ]− k5[Y ]− k4[Y ]

K4 + [Y ]

˙[Z ] = k5[Y ]− k6[Z ]

K6 + [Z ]

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mit
Nachlaufsynchronisation. Diploma thesis, 2011
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Affecting Frequency by Degradation Rate of Z

k6

pe
rio

d 
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ng
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 (h
)

• Velocity parameter k6 of Z degradation notably influences
oscillation frequency

• Period control coefficients assigned to each reaction
quantify influence on frequency

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency
Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,
to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011
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Controller: Signal Comparator

coupled
one or several
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local feedback(s)

global feedback path

damping and delay)
(loop filter for

affects
frequency

signal
tuning

signal comparator

frequency deviation)
(phase difference or

signal
output

signal
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external

Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Control
by Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.
Computational Intelligence and Neuroscience 2011:262189, 2011
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Signal Comparator: Multiplication Unit
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˙[X1] = 0
˙[X2] = 0
˙[Y ] = k1[X1][X2]− k2[Y ]

ODE solution for asymptotic steady state in case of k1 = k2:
[Y ](∞) = lim

t→∞

(
1− e−k1t

)
· ([X1](t) · [X2](t)) = [X1](0) · [X2](0)

Input-output mapping: [Y ] = [X1] · [X2]

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency
Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,
to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011
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Comparing Phases: Mathematical Background

Output of core oscillator ω = 2π/τ :

y(t) = y(t + τ) = A0 +
∞∑

n=1

An cos(nωt + ϕn)

Input of external reference signal ω′ = 2π/τ ′:

z(t) = z(t + τ ′) = A′0 +
∞∑

n=1

A′n sin(nω′t + ϕ′n)

For simplicity we assume that all higher harmonics are
removed by a filter.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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Comparing Phases by Multiplication

Multiplication module:

ẋ = k(z(t)y(t)− x) lim
k→∞

x(t) = z(t)y(t)

Output of multiplication:

z(t)y(t) = A′0A0 + A′0A1 cos(ωt + ϕ1) + A0A′1 sin(ω′t + ϕ′1)

+
A′1A1

2
(
sin((ω′ − ω)t + ϕ′1 − ϕ1) + sin((ω′ + ω)t + ϕ′1 + ϕ1)

)
Low frequency term (ω′ ≈ ω) carries the phase-difference
information: φ′ − φ.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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Actuator: Global Feedback with Low-pass Filter
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Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Control
by Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.
Computational Intelligence and Neuroscience 2011:262189, 2011
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Low-pass Filter as Global Feedback
• Desensibilise global feedback by

signal smoothing, damping, and delay
• Eliminate high-frequency oscillations by a low-pass filter

Simple linear reaction cascade forms a low-pass filter.
Samoilov et al. J Phys Chem 106, 2002

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mit
Nachlaufsynchronisation. Diploma thesis, 2011

Adjust kinetic parameters to obtain desired filtering.
Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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Low-pass Filter
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˙[X1] = k1[X ]− k2[X1]
˙[X2] = k2[X1]− k3[X2]

...
˙[X n−1] = kn−1[Xn−2]− kn[Xn−1]

˙[Y ] = kn[Xn−1]− kn+1[Y ]
T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock Frequency
Control Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,
to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011
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Low-pass Filter: Bode Plot as Characteristic Curve

frequency in 1/s

cutoff frequency

slope

m
ag

ni
tu

de
 in

 d
B

Magnitude dB = 10 · lg
(

amplitude of output signal
amplitude of input signal

)
• Signals affected by smoothing delay throughout cascade
• Oscillation waveform harmonisation into sinusoidal shape
• Global filter parameters:

passband damping, cutoff frequency, slope

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein
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Model of a Chemical Frequency Control Based on PLL
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Period Lengths subject to Constant External Stimulus
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Time to Entrainment to Different Period Lengths
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Time to Entrainment to Different Initial Phase Shifts

initial phase shift (°) between external stimulus [E] and core oscillator output [Z]
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Best Case and Worst Case Entrainment
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Perturbed Core Oscillator

Unperturbed core oscillator at constant external signal A′0:

dX
dt

= F(X)

with limit cycle solution X0(t) = X0(t + τ).
Perturbed core oscillator:

dX
dt

= F(X) + ε sin (. . . ) kl
∂F
∂kl

(X).

Since ε is small the amplitude of the limit cycle is not affected
and we can reduce the model to the phase dynamics!
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Amplitude and Phase

Granada & Herzel. PLoS ONE 4(9): e7057, 2009

We can assign each point on the limit cycle X0 a specific phase
value φ.
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Phase Reduction (Kuramoto 1984)

Demir et al. IEEE Transactions on circuits and systems 47(5):655-674, 2000

Oscillator phase dynamics:
dφ
dt

= ω + εPRCl(φ) sin
(
φ′ − φ+ ϕlpf

)
.

PRCl is the 2π-periodic phase response curve of kl.
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Phase Response Curve

http://en.wikipedia.org/wiki/Phase_response_curve
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Phase Difference

Phase difference ψ between oscillator and external signal:

ψ = φ− φ′

dψ
dt

= ω − ω′ − εPRCl(φ
′ + ψ) sin

(
ψ − ϕlpf

)
ψ is a slowly changing variable compared to φ′ = ω′t , therefore
we may average the perturbation over one external cycle and
consider ψ on the slow time scale:

1
τ ′

∫ τ ′

0
PRCl(φ

′(t) + ψ) dt = −Cτ
l ,

where Cτ
l = kl/τ

∂τ
∂kl

is the period control coefficient.
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Phase Difference

Phase difference equation:
dψ
dt

=
ω − ω′

ε
+ Cτ

l sin
(
ψ − ϕlpf

)
Phase-locking corresponds to (stable) steady-state solutions ψ0
of this equation:

φ(t) = φ′(t) + ψ0.

Phase locking exists in a region enclosed by:

ε± = ∓
(
ω − ω′

) 1
Cτ

l
,

the so called Arnold tongue.
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Arnold Tongue

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mit
Nachlaufsynchronisation. Diploma thesis, 2011
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Phase Lag

The phase lag can be easily determined from the derived
equation. For example consider ω = ω′ and Cτ

l < 0, the stable
solution then is:

ψ0 = ϕlpf .

That means the phase lag is completely determined by the
low-pass filter.
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Conclusions
• Chemical frequency control can utilise PLL
• Prototypic modelling example for

entrainment of circadian clockworks
• Chemical processing units in minimalistic manner
• Variety of chemical implementations
• Modularisation in (bio)chemical reaction systems

Some open questions
• Identification of in-vivo counterparts
• Replacement of individual processing units

(like different core oscillators)
• Balancing advantages and limitations of the PLL approach
• Inclusion of temperature entrainment (by Arrhenius terms)
• Alternative concepts of frequency control
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