A P System for Cell Signalling Networks

Example and Conclusion

A Protein Substructure Based P System for Description and Analysis of Cell Signalling Networks

Thomas Hinze Thorsten Lenser Peter Dittrich

Bio Systems Analysis Group Friedrich Schiller University Jena

{hinze,thlenser,dittrich}@cs.uni-jena.de www.minet.uni-jena.de/csb

7th Workshop on Membrane Computing

Description and Analysis of Cell Signalling Networks

A P System for Cell Signalling Networks

Example and Conclusion

Outline

Bringing Membrane Systems Back to Biology

Introduction

Biological Principles of Cell Signalling ESIGNET – Research Project Modelling Cell Signalling Networks A P System for Cell Signalling Networks Motivation and Intention System Definition Matching and Matching Strategies System Behaviour and Properties Example and Conclusion Example: Yeast Pheromone Pathway

Example: Yeast Pheromone Pathway Conclusion and Future Work

Description and Analysis of Cell Signalling Networks

A P System for Cell Signalling Networks

Example and Conclusion

Biological Principles of Cell Signalling

Information Processing in Living Cells

Description and Analysis of Cell Signalling Networks

Example and Conclusion

ESIGNET – Research Project

Evolving Cell Signalling Networks (CSNs) in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (ALife Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- study the computational properties of CSNs
- developing new ways to model and predict real CSNs
- gain new theoretical perspectives on real CSNs

SIXTH FRAMEWORK PROGRAMME

A P System for Cell Signalling Networks

Example and Conclusion

Modelling Cell Signalling Networks

Phenotypic Description of CSNs - Structure, Behaviour, Function

Description and Analysis of Cell Signalling Networks

A P System for Cell Signalling Networks

Example and Conclusion

Motivation and Intention

Adopting Advantages of P Systems to Project Objectives

- Capture significant aspects of cellular signalling:
 - components, topology, modularity
 - protein substructures and properties
 - dynamical behaviour
 - signal coding and transduction
 - robustness to perturbations
 - computational capacity
- Provide a general framework
- P systems feature different levels of abstraction
- Keep formalism tractable
- Balance detailedness with computational needs
- Facilitate system modification, recombination, and construction ab initio

A P System for Cell Signalling Networks

Example and Conclusion

System Definition

Identification of Components Based on Biological Model

- System $\Pi_{\text{CSN}} = (V, V', E, M, n)$
 - V: alphabet of protein identifiers
 - V': alphabet of protein substructure/property identifiers
 - M: modules → functional reaction units
 - E: graph transduction channels between modules
 - n: number of modules (degree of the P system)
- Modules $M_i = (R_{i1}, \ldots, R_{ir_i}, \mathbf{f}_{i1}, \ldots, \mathbf{f}_{ir_i}, A_i) \in M$
 - *R_{ij}*: reaction rule → multisets of educts and products may contain meta-symbols → matching required
 - f_{ij}: function corresponding to **kinetics** of *R*_{ij}, number of educt objects taken from module within one reaction step
 - A_i : multiset of axioms \longrightarrow initial contents of M_i
- Channels $\boldsymbol{e}_{ij} = (i, j, \boldsymbol{I}_{ij}, \mathbf{d}_{ij}) \in \boldsymbol{E}$
 - weighted directed channel from module *i* to module *j*
 - Iij: filter interface (receptor pattern and conc. gradient)
 - d_{ij}: time delay (number of system steps) for passage

Description and Analysis of Cell Signalling Networks

Matching and Matching Strategies

Comparison of String-Objects Describing Biomolecules

- String-based representation of proteins
 - **string-object** *s*: representation of a protein, its properties, substructure, binding domains, activation state, ligands
 - structure: $s \in V^+ \otimes (\{\#\} \otimes ((V')^+ \cup \{\neg\} \otimes (V')^+ \cup \{\star\}))^*$
 - meta-symbols: placeholder (wild-card) ★ → appropriate or unknown substructure/property; exclusion ¬
 - · test whether two string-objects identify same molecule
- Matching strategies

Description and Analysis of Cell Signalling Networks

A P System for Cell Signalling Networks $\circ \circ \bullet \circ$

Example and Conclusion

Matching and Matching Strategies

Comparison of String-Objects Describing Biomolecules

			concretions																	
Ca#GDP#p	$C\alpha # GDP # \neg p$	$C_{\alpha \# GTP \# p}$	$C\alpha # GTP # \neg p$	$C\alpha #*#p$	$C_{\alpha \# GDP \# *}$	$C\alpha #*#*$	Dβ:E#*#*	$V = \{C\alpha, D\beta:E\}$ $V' = \{GDP, GTP, p\}$	Ca#GDP#p	$C\alpha # GDP # \neg p$	$C\alpha #GTP#p$	$C\alpha #GTP # \neg p$	$C\alpha #*#p$	$C_{\alpha \# GDP \# *}$	$C\alpha #*#*$	Dβ:E#*#*				
								$C\alpha #GDP #p$												
								$C\alpha #GDP #\neg p$												
								$C\alpha #GTP #p$									<u> </u>			
								$C\alpha #GTP #\neg p$									Ë			
								$C\alpha #*#p$									att			
								$C\alpha #GDP#*$									2			
								$C\alpha #*#*$												
								Dβ:E#*#*												
Llo	loose matching											strict matching								

Description and Analysis of Cell Signalling Networks

System Behaviour and Properties

Controlled Interplay of Components at Global Level

- Definition of dynamical system behaviour
 - contents of module M_i at global time $t \in \mathbf{N}$: multiset $L_i(t)$
 - system step by module *M_i*:

 $\begin{array}{rcl} L_i(0) &=& A_i \\ L'_i(t) &=& L_i(t) \ominus \textit{Educts}_i(t) \uplus \textit{Products}_i(t) \\ L_i(t+1) &=& L'_i(t) \ominus \textit{Outgoing}_i(t) \uplus \textit{Incoming}_i(t) \end{array}$

- 1. Determine multiset of educts using
 - $L_i(t), R_{i1}, \ldots, R_{ir_i}, f_{i1}, \ldots f_{ir_i}$; involves matching
- 2. Remove educt objects from module contents
- 3. Determine and add multiset of reaction products, obtain $L'_i(t)$
- 4. Determine and separate objects leaving host module evaluate $L'_i(t)$ and l for each outgoing channel, matching
- 5. Add objects received from incoming channels, consider d
- System properties
 - modularity static system topology ability to identify objects/substructures – flexibility in level of abstraction
 - determinism computational tractability universality

A P System for Cell Signalling Networks

Example and Conclusion

Example: Yeast Pheromone Pathway

Signal Transduction in Saccharomyces cerevisiae

A well-known signalling system controlling mating behaviour

A P System for Cell Signalling Networks

Example and Conclusion

Conclusion and Future Work

Summary

- P systems provide a suitable framework for modelling CSNs
- Valuable insight can be gained from combining previously isolated ideas
- Our system takes first steps in this direction

Outlook

- Software simulation to prove practicability of the approach
- Interface to biological databases / experimental knowledge
- Investigation into the evolution of CSNs

Description and Analysis of Cell Signalling Networks