Event-Driven Metamorphoses of P Systems

T. Hinze R. Faßler T. Lenser N. Matsumaru P. Dittrich {hinze,raf,thlenser,naoki,dittrich}@minet.uni-jena.de

Bio Systems Analysis Group Friedrich Schiller University Jena

www.minet.uni-jena.de/csb

Ninth Workshop on Membrane Computing (WMC9)

Partially Self-Reproducible

Artificial Network E 000 Outlook 000

Outline

- Motivation
- Mass-action kinetics
- P systems Π_{PMA}
- Transitions between P systems Π_{PMA}
- Example 1: Partially self-reproducible register machines
- Example 2: Artificial network evolution
- Outlook and acknowledgement

Plasticity = Structural Dynamics

Some biological examples

- Metamorphosis
- Mutational self-replication
- Population dynamics
- Synaptic plasticity
- Photosynthesis

Structure includes: set of reactions or behavioural rules

Event-Driven Metamorphoses of P Systems

Plasticity = Structural Dynamics

Some biological examples

- Metamorphosis
- Mutational self-replication
- Population dynamics
- Synaptic plasticity
- Photosynthesis

Structure includes: set of reactions or behavioural rules

Event-Driven Metamorphoses of P Systems

Plasticity = Structural Dynamics

Some biological examples

- Metamorphosis
- Mutational self-replication
- Population dynamics
- Synaptic plasticity
- Photosynthesis

Structure includes: set of reactions or behavioural rules

tics II_{PMA} Ira

Partially Self-Reproduction 00000000 Artificial Network Evolution Outlo

Mass-Action Kinetics: Background

Modelling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots \quad Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating C: $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$

Consumption rate of C: $V_{cons}([C]) = C$ $\frac{d[C]}{dt} = V_{prod}([C]) - V_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditional [C](0) [A](0)

Initial conditions: [C](0), [A](0), [B](0)

Event-Driven Metamorphoses of P Systems

tics II_{PMA} Ira

Partially Self-Reproducib

Artificial Network Evolution Outlo

Mass-Action Kinetics: Background

Modelling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots \quad Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating C: $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$

Consumption rate of C: $\dots v_{cons}([C]) = 0$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0) [A](0) [B](0)

Event-Driven Metamorphoses of P Systems

oco oc

Partially Self-Reproducible

Artificial Network Evolution Outloo

Mass-Action Kinetics: Background

Modelling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

 $A + B \xrightarrow{\hat{k}} C \quad \dots \quad Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$ $Z_C \sim [A] \cdot [B]$

Production rate generating *C*:

 $V_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$ Consumption rate of C: $v_{cons}([C]) = 0$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0), [A](0), [B](0)

Event-Driven Metamorphoses of P Systems

tics II_{PMA} Ira

 Partially Self-Reproducib 00000000 Artificial Network Evolution Outlo

Mass-Action Kinetics: Background

Modelling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating *C*:

 $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$ Consumption rate of C:v_cons([C]) = 0 $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0), [A](0), [B](0)

Event-Driven Metamorphoses of P Systems

oco oc

Partially Self-Reproducible

Artificial Network Evolution Outloo

Mass-Action Kinetics: Background

Modelling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating *C*:

 $\begin{aligned} v_{prod}([C]) &= \hat{k} \cdot [A] \cdot [B] \\ \text{Consumption rate of } C: & \dots \cdot v_{cons}([C]) &= 0 \\ \frac{d[C]}{dt} &= v_{prod}([C]) - v_{cons}([C]) \\ \frac{d[C]}{dt} &= \hat{k} \cdot [A] \cdot [B] \\ \end{aligned}$ Initial conditions: [C](0), [A](0), [B](0)

Event-Driven Metamorphoses of P Systems

oco oc

Partially Self-Reproducible

Artificial Network Evolution Outloo

Mass-Action Kinetics: Background

Modelling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactant collisions Z proportional to reactant concentrations (Guldberg 1867)

$$A + B \xrightarrow{\hat{k}} C \quad \dots Z_C \sim [A] \text{ and } Z_C \sim [B], \text{ so}$$

 $Z_C \sim [A] \cdot [B]$

Production rate generating C:

 $v_{prod}([C]) = \hat{k} \cdot [A] \cdot [B]$ Consumption rate of C: $v_{cons}([C]) = 0$ $\frac{d[C]}{dt} = v_{prod}([C]) - v_{cons}([C])$ $\frac{d[C]}{dt} = \hat{k} \cdot [A] \cdot [B]$ Initial conditions: [C](0), [A](0), [B](0) to be set

Event-Driven Metamorphoses of P Systems

Mass-Action Kinetics: General ODE Model Chemical reaction system

results in ordinary differential equations

$$\frac{d[S_i]}{dt} = \sum_{\nu=1}^h \left(\hat{k}_{\nu} \cdot (b_{i,\nu} - a_{i,\nu}) \cdot \prod_{l=1}^n [S_l]^{a_{l,\nu}} \right) \quad \text{with} \quad i = 1, \dots, n.$$

ESIGNET

Event-Driven Metamorphoses of P Systems

Mass-Action Kinetics

0.00

Mass-Action Kinetics ПРМА Transitions Partially Self-Reproducible RAM Artificial Network Evolution Outlook 0 0 00 00000000 00000000 000</

Mass-Action Kinetics: A Simple Example

$$2A + 0B \xrightarrow{\hat{k}_{1}} 0A + 1B$$
ODE system
$$\frac{d[A]}{dt} = -2 \cdot \hat{k}_{1} \cdot [A]^{2}$$

$$\frac{d[B]}{dt} = \hat{k}_{1} \cdot [A]^{2}$$
Analytic solution
$$[A](t) = \left(2\hat{k}_{1}t + \frac{1}{[A](0)}\right)^{-1} \quad \text{iff} \quad [A](0) > 0 \quad \text{else} \quad [A](t) = 0$$

$$[B](t) = \left(-2\left(2\hat{k}_{1}t + \frac{1}{[A](0)}\right)\right)^{-1} + \frac{[A](0)}{2} + [B](0)$$

P Systems Π_{PMA}

Why?

- Allow coupling of systems in terms of system transitions
- Adopt systems description by reaction networks
- Discretise mass-action kinetics

Aspects considered for single system

- Suitability for small amounts of reacting particles (e.g. cell signalling)
- Compliance with mass conservance for undersatisfied reaction scenarios
- Determinism by strict prioritisation of rewriting rules
- Obtaining simple computational units
- Symbol objects
- Spatial globality in single well-stirred vessel

 Motivation
 Mass-Action Kinetics
 Прма
 Transitions
 Partially Self-Reproducible RAM
 Artificial Network

 00
 000
 00
 000
 000
 000
 000

P Systems Π_{PMA} : Definition

 $\Pi_{\rm PMA} \, = \, (V, \Sigma, [_1]_1, L_0, R)$

V	system alphabet
$\Sigma \subseteq V$	terminal alphabet
[1]1	compartmental structure
$L_0 \subset V imes (\mathbb{N} \cup \{\infty\}) \dots \dots m$	Iltiset for initial configuration
$\boldsymbol{R} = \{\boldsymbol{r}_1, \ldots, \boldsymbol{r}_h\}$	set of reaction rules

Each reaction rule r_i consists of two multisets and rate constant (reactants E_i , products P_i , k_i) such that

 $r_i = (\{(A_1, a_1), \ldots, (A_n, a_n)\}, \{(B_1, b_1), \ldots, (B_n, b_n)\}, k_i).$

We write in chemical denotation:

$$r_i: a_1 A_1 + \ldots + a_n A_n \xrightarrow{k_i} b_1 B_1 + \ldots + b_n B_n$$

 \implies Index *i* specifies priority of r_i : $r_1 > r_2 > \ldots > r_h$.

Event-Driven Metamorphoses of P Systems

 Motivation
 Mass-Action Kinetics
 Прма
 Transitions
 Partially Self-Reproducible RAM
 Artificial Network Evolution
 Outlo

 00
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

P Systems Π_{PMA} : Definition

 $\Pi_{PMA} \, = \, (V, \Sigma, [_1]_1, L_0, R)$

V	system alphabet
$\Sigma \subseteq V$	terminal alphabet
[1]1	compartmental structure
$L_0 \subset V \times (\mathbb{N} \cup \{\infty\}) \dots$	multiset for initial configuration
$\boldsymbol{R} = \{\boldsymbol{r}_1, \ldots, \boldsymbol{r}_h\} \ldots$	set of reaction rules

Each reaction rule r_i consists of two multisets and rate constant (reactants E_i , products P_i , k_i) such that

 $r_i = (\{(A_1, a_1), \dots, (A_n, a_n)\}, \{(B_1, b_1), \dots, (B_n, b_n)\}, k_i).$

We write in chemical denotation:

$$r_i: a_1 A_1 + \ldots + a_n A_n \xrightarrow{k_i} b_1 B_1 + \ldots + b_n B_n$$

 \implies Index *i* specifies priority of r_i : $r_1 > r_2 > \ldots > r_h$.

Event-Driven Metamorphoses of P Systems

P Systems Π_{PMA} : Discretised Mass-Action Kinetics Mapping of rate constant \hat{k}_i from ODE model

$$k_i = rac{\hat{k}_i}{\mathrm{V}^{|\mathcal{E}_i|}} \cdot \Delta t$$

with V: volume of reaction vessel, Δt : time discretisation interval

Considering reactions r_1, \ldots, r_h **consecutively** Iteration scheme for reaction $r_i = (E_i, P_i, k_i)$

000

Multiplicities depend on $L_{t,i-1}, E_i, P_i, k_i$

Event-Driven Metamorphoses of P Systems

Motivation Mass-Action Kinetics Прма

ivation Mass-Action Kinetics Π_{PMA} Transitions Partially Self-Reproducible RAM Artificial Network Evolution Outlook

Transitions between P Systems Π_{PMA}

State transition system $\ensuremath{\mathcal{A}}$

- Each P system Π_{PMA} represents a state in \mathcal{A}
- State transitions in A initiated by triggering events with regard to time $(t = \tau)$ or species concentration as $([a] = \kappa)$

$$\mathcal{A} = (\mathsf{Q}, \mathsf{T}, \mathsf{I}, \Delta, \mathsf{F})$$

 $\begin{array}{l} \mathsf{Q} = \{ \Pi_{\mathsf{PMA}}^{(j)} \mid (j \in \mathsf{A}) \land (\mathsf{A} \subseteq \mathbb{N}) \} & \text{...states} \\ \mathsf{T} \subseteq \{ (t = \tau) \mid (\tau \in \mathsf{B}) \land (\mathsf{B} \subseteq \mathbb{N}) \} \cup & \text{...input alphabet} \\ \{ ([\mathsf{a}] \operatorname{cmp} \kappa) \mid (\kappa \in \mathbb{N}) \land (\mathsf{a} \in \mathsf{V}^{(j)}) \land & \text{..cmp:} =, <, \leq, \dots \\ (\Pi_{\mathsf{PMA}}^{(j)} = (\mathsf{V}^{(j)}, \mathsf{\Sigma}^{(j)}, [_1]_1, \mathsf{L}_0^{(j)}, \mathsf{R}^{(j)}) \in \mathsf{Q}) \land (j \in \mathsf{A}) \} \\ \mathsf{I} \subseteq \mathsf{Q} & \text{...initial states} \\ \mathsf{\Delta} \subseteq \mathsf{Q} \times \mathsf{T} \times \mathsf{Q} & \text{...initial states} \\ \mathsf{F} \subseteq \mathsf{Q} & \text{....input alphabet} \\ \end{array}$

Transitions between P Systems Π_{PMA}

P system transition $\Pi_{\text{PMA}}^{(j)} \stackrel{c}{\mapsto} \Pi_{\text{PMA}}^{(m)} \in \Delta$ in detail

Transitions

From
$$\Pi_{\text{PMA}}^{(j)} = (V^{(j)}, \Sigma^{(j)}, [_1]_1, L_0^{(j)}, R^{(j)})$$

To $\Pi_{\text{PMA}}^{(m)} = (V^{(m)}, \Sigma^{(m)}, [_1]_1, L_0^{(m)}, R^{(m)})$
Triggered by $c \in T$:

$$\begin{array}{lll} V^{(m)} &=& V^{(j)} \cup \textit{AdditionalSpeciesV}_{(j,m)} \setminus \textit{VanishedSpeciesV}_{(j,m)} \\ \Sigma^{(m)} &=& \Sigma^{(j)} \cup \textit{AdditionalSpecies\Sigma}_{(j,m)} \setminus \textit{VanishedSpecies\Sigma}_{(j,m)} \\ L_0^{(m)} &=& L_t^{(j)} \uplus \{(a,0) \mid a \in \textit{AdditionalSpeciesV}_{(j,m)}\} \\ R^{(m)} &=& R^{(j)} \uplus \textit{AdditionalReactions}_{(j,m)} \ominus \textit{VanishedReactions}_{(j,m)} \end{array}$$

Re-prioritisation of reaction rules if necessary

Motivation Mass-Action Kinetics ПРМА

Example 1

Chemical register machine (RAM) with self-reproducible components

- Construction of chemical reaction networks for boolean logic gates
- Introduction of a chemical clock by oscillating reactions
- Specification of a chemical master-slave flip-flop (MSFF)
- Utilise chemical master-slave flip-flop as 1-bit storage unit (initial register)
- Extend registers if needed by integration of further 1-bit storage units (self-replicable components)
- Transform register machine program into chemical program control (INC, DEC, IFZ, HALT)
- Sequential as well as parallelised register machine chemistry

Chemical Implementation of Boolean Variables and Logic Gates

Partially Self-Reproducible RAM

Chemical reaction network for NAND

Boolean variable z represented by two correlated species Z^T and Z^F

T. Hinze, R. Faßler, T. Lenser, N. Matsumaru, P. Dittrich

A Chemical Clock

0000000

Partially Self-Reproducible RAM

- Based on Belousov-Zhabotinsky reactions
- Cascade of auxiliary reactions for fast-switching behaviour
- Two offset oscillators provide clock signals [C₁] and [C₂]

Event-Driven Metamorphoses of P Systems

tics H_{PMA} If 000 00 Partially Self-Reproducible RAM

Artificial Network Evolution Outle

Master-Slave Flip-Flop

Reliable 1-bit storage unit, well-studied

vation Mass-Action Kinetics Π_{PMA} Transitions Partially Self-Reproducible RAM Artificial Network Evolution Outlook

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

 Mass-Action Kinetics
 Прма
 Transitions
 Partially Self-Reproducible RAM
 Artificial Network Evolution
 Outlook

 000
 00
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

vation Mass-Action Kinetics Π_{PMA} Transitions **Partially Self-Reproducible RAM** Artificial Network Evolution Outlook

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

 Mass-Action Kinetics
 ПРМА 000
 Transitions
 Partially Self-Reproducible RAM
 Artificial Network Evolution
 Outlook

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Chemical MSFF Implementation

Two-stage switching from **FALSE** to **TRUE** using trigger species and offset clocks C_1 and C_2

species M^F , M^T : master bit value species S^F , S^T : slave bit value

MotivationMass-Action Kinetics\$\P_{PMA}\$TransitionsPartially Self-Reproducible RAMArtificial Network EvolutionOutlook000000000000000000000000

From MSFF to Register

- Four network motifs (all switching scenarios) form MSFF
- Chaining of MSFFs to build register of arbitrary length
- Assumption of MSFF as self-replicable modular unit

From MSFF to Register

Partially Self-Reproducible RAM

- Four network motifs (all switching scenarios) form MSFF
- Chaining of MSFFs to build register of arbitrary length
- Assumption of MSFF as self-replicable modular unit

Partially Self-Reproducible RAM 00000000

Chemical Program Control

Simple example for sequential instruction flow:

 $\#_0$: IFZ R₁ $\#_2$ $\#_1$ $\#_1$: DEC R₁ $\#_0$ #2 : HALT

Simulation: Adding Binary Numbers

0000000

Partially Self-Reproducible RAM

- Denotation of register machine by P systems Π_{PMA}
- Dynamical network behaviour emulates computation
- Stepwise extension of registers: system transitions
- Simulation carried out using CellDesigner (SBML)

Event-Driven Metamorphoses of P Systems

Example 2: Artificial Network Evolution

Task: addition of two positive real numbers

- R0, R1, R2 identify reactions
- input1, input2, output1: distinguished species
- X1, X2: auxiliary species
- Stepwise modification of network structure and kinetic parameters

Artificial Network Evolution

....

MotivationMass-Action Kinetics
oo Π_{PMA}
ooTransitions
ooPartially Self-Reproducible RAM
ooArtificial Network Evolution
ooOutlook
oo

Two-Level Evolutionary Algorithm

- Separation of structural evolution from parameter fitting
- Idea: parameters can adapt to mutated network structure

- Upper level: network structure, analogue to graph-GP
- Lower level: parameter fitting using standard Evolution
 Strategy
- \implies All networks handled as SBML models

Evolutionary Operators and Parameterisation

EA used here employs eight different mutations

Operators for structural evolution

- Addition/deletion of a species
- Addition/deletion of a reaction
- Connection/removal of an existing species to/from a reaction
- Duplication of a species with all its reactions (discussed in detail later)

Operator for parameter evolution

 Mutation of a randomly selected kinetic parameter by addition of a Gaussian variable

Artificial Network Evolution

Further information on SBMLevolver software: www.esignet.net

Take home message

- Coordination of temporally local subsystems into common framework requires homogeneous approach
- P systems suit here: discreteness, combine different levels of abstraction
- Exploring structural dynamics in Systems Biology
- Understand/predict functionality of complex dynamical systems as a whole beyond molecular computing

Further work

 Comprise P systems of (selected) different classes and with compartmental structures into common transition framework

Acknowledgement: ESIGNET Project Funded by EU

Evolving Cell Signalling Networks in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (Artificial Life Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of bionetworks
- · Develop new ways to model and predict real bionetworks
- · Gain new theoretical perspectives on real bionetworks

Computing facilities

 Cluster of 33 workstations (two Dual Core AMD Opteron[™] 270 processors)

SIXTH FRAMEWORK PROGRAMME

Outlook

Mass-Action Kinetics
οοοΠ
PMA
οοοTransitions
ooPartially Self-Reproducible RAM
οοοArtificial Network Evolution
οοοOutlook
οο

Our Team for Bio Systems Analysis in Jena

Peter Dittrich (PI)

Thomas Hinze (PostDoc)

Gerd Grünert (PhD student) Bashar Ibrahim (PhD student) Thorsten Lenser (PhD student) Naoki Matsumaru (PhD student) Stefan Peter (PhD student)

Franz Carlsen (research assistant) Raffael Faßler (research assistant) Christoph Kaleta (research assist.) Stephan Richter (research assist.)

www.minet.uni-jena.de/csb

Thank you for your attention. Questions? Remarks?

Event-Driven Metamorphoses of P Systems