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Abstract

The publication of the Adleman experiment in 1994 gave the crucial im-
petus for many approaches to DNA computing as one possible form of future
computing [Adl94]. There is worldwide discussion about chances and lim-
its of this model for computation that focus on implementations and also
important theoretical considerations about ”Calculating inside the reaction
tube”. Practical approaches to DNA computing are considered particularly
interesting, so to say solutions of NP-problems in the laboratory, from which
theoretical models can be derived. A certain NP-problem was solved in the
laboratory by an interdisciplinar researching group at the University of Tech-
nology Dresden, Germany. We are grateful to H.K. Schackert, M. Hauses, and
O.N. Koufaki for their help and support to establish the lab-implementation
of the algorithm. Here, we show how to describe the algorithm of the NP-
problem in this language and how to implement it in the laboratory. All
functions of the language DNA-HASKELL are executed by lab-experiments.
We argue which efficient possibilities exist in the molecular biology to solve
mathematical problems, especially NP-problems. The theory of complexity is
used to evaluate solutions of the laboratory and the model.

1 Introduction

An interesting alternative to the application of numbers and processors is the use
of biomolecules and laboratory techniques in the computer science [Kar97]. Tt is
well-known that science and economy are very interested in solving a certain class
of mathematical problems — the class of NP-problems. The state of the art tech-
nology is unable to solve these problems at reasonable time. This led to the search
for alternative hardware constructions allowing a high quantity processing to meet
exactly these requirements. A variety of approaches to future computing (quan-
tum computing, neural computing, and DNA computing) are focused by numerous
scientific studies and are compared with conventional electronic computing.

The development of DNA computing was launched in 1994. After the study
of James Watson’s ”Molecular biology” the well-known mathematician Leonard
Adleman, an expert in the field of data protection and cryptographics, recognized
the relations between DNA and a computer and established the first DNA computer
to successfully solve the Hamiltonian Path Problem.

The advantages were obvious; DNA computing is based on a biological parallel
computer using DNA operations with enormous memory capacity and operational
speed. Adleman’s model processes 1.2 - 10'® operations per second. This is approx-
imately 1 200 000 times faster than the fastest supercomputer currently available.
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A DNA computer is 100 fold more energy efficient than a conventional computer.
DNA stores information at a density of 1Bit/nm?, whereas the classic storage den-
sity amounts to 1Bit/10"2nm? [Kar97).

From the very beginning research in the field of DNA computing followed both
aspects, namely the theoretical as well as experimental processing of the problems.
However, little is published on dealing with laboratory practice [Das98]. This is
due to the complexity of working techniques in a molecularbiological laboratory
especially for a theoretical computer scientist.

After Adleman’s experiment Lipton formalized the model of parallel computa-
tion. He used the 3SAT problem and proved that this problem — like any NP-
problem — can be solved in polynomial time. It required a lot of experiments to
warrant reproducability and resistance to errors of DNA operations. These studies
focus on PCR (Polymerase Chain Reaction).

Over the last years a variety of DNA models was developed and discussed under
different aspects. The objectives were their complexity, their stability, and last not
least their practicability. The DNA computer represents a powerful tool to describe,
execute and implement parallel processes.

The scientific activities of the authors focus on the solution of a certain NP-
problem — the integer knapsack problem. The proposed model is flexible and com-
prehensive enough to solve any NP-problem.

2 DNA-HASKELL

The computer science utilizes the molecularbiological techniques to solve a certain
class of mathematical problems. One component of this class is the integer knapsack
problem well-known as NP-complete. For a definition see section 4.

The solution to this problem based on DNA computing resulted in the de-
velopment of a model that involves several layers. The lowest level includes the
molecularbiological operations that are required for NP-problem solving. A spe-
cific selection of a variety of operations solves the integer knapsack problem. The
operations process DNA strands and sequences (DeoxyriboNucleic Acid). DNA is
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Figure 1: nucleotides with four different bases [Ber92]

the storage medium of genetic information in cell organisms. Phenotypic proper-
ties are inherited by propagating genetic information. The carrier of this genetic
information is DNA composed of a sequence of nucleotides. There are four different
types of nucleotides. Nucleotides vary in the bases adenine, thymine, guanine and
cytosine. The corresponding nucleotides are named A, T, G, and C. A base is a



circular molecule consisting of chemical bonds between carbon and nitrogen atoms.
Additional molecules are linked to each base and the deoxyribose ring is coupled
to phosphate. DNA strands are formed by chemical bonds between the phosphate
on a deoxyribose and the deoxyribose of the adjacent nucleotide. In brief, the de-
oxyribose phosphate units represent the chainlinks of the DNA strand. For each
deoxyribose in DNA, one phosphate is joined to the deoxyribose 3’-position and
one to the 5’-position. Thus each strand has a definite polarity that can be read
bidirectionally (5’-3’, 3’-5’). Strands can be handled as single strands and as double

Figure 2: the double helix

strands. The bases of opposite strands fit together precisely in which A pairs with
T and G with C through complementary hydrogen bonds as illustrated in Figure 2.
The nucleotide sequence of one strand defines the sequence of the opposite strand in
the double strand system to form complementary nucleotide sequences. The double
strands paired in this way are named complementary. Both strands have opposite
directions, one strand from 5’ to 3’ (sense) and the other one from 3’ to 5’ (anti-
sense). Winding both complementary strands around an axis forms the structure
of a double helix. This classical model of DNA was published in 1953 by Wat-
son/Crick and gained great significance in molecular biology, genetic engineering
and medicine.

DNA strands can be recombined by exchange of nucleotide sequences. The
recombination technology uses a variety of molecularbiological operations that are
in part considered in DNA computing. Nearly all these operations can be performed
in a reaction tube:

e Annealing
This operation forms under special conditions (temperature, ...) a double
strand from at least two antiparallel and complementary single strands.

e Melting
Melting is the opposite of Annealing. A double strand can be divided into its
single strands given certain circumstances.



e Synthesis
In particular, this operation gained great significance for problem solving in
computer science. A single strand can be synthesized with any base sequence
desired.

e Ligation
The enzyme DNA ligase catalyses concatenating of DNA double strands under
certain circumstances relying on the structure of the ends of the DNA strands.

e Extraction
This operation causes that all these DNA strands will be extracted from a
given double strand set that contain a certain ”substrand”.

e Merging
This operation allows to merge the contents of several tubes into one tube.

e Agarose gel electrophoresis
DNA strands of different lengths are separated by gel electrophoresis. The
negative charged DNA strands are migrating through the agarose matrix in
an electric field. The shorter the strands the faster they move. The DNA can
be made visible by ethidiumbromide staining, a chemical substance that can

be illuminated under UV-light.

e Phosphorylating/ Dephosphorylating
To control the ligation it is possible to insert or to remove a phosphate
molecule at the 5-ends of DNA strands.

e Blunting
This operation fills up sticky ends starting with the 3’-end up to the 5-end
by inserting complementary nucleotides until a blunt end is reached.

e Polymerase Chain Reaction (PCR)
The PCR is a technique to amplify specific DNA sequences using a polymerase
to produce newly synthesized copies of a certain DNA sequence. The PCR
approach represents an efficient technique to amplify DNA strands without
cut and paste mechanism.

The language DNA-HASKELL was conceived on the base of the functional lan-
guage HASKELL. The decision for a functional language is due to the fact that
the abstraction level of a functional program is close to the level of problem spec-
ification. This quality allows an easier mathematical handling. Only because of
this property correctness proofs, verification, and analysis of program properties
are possible. DNA computing as a modern model for computations is convincing
only if a formal description of the labwork can be done. DNA-HASKELL with its
specific functions represents the second layer of the model.

Declaration of DNA data types

data Base
data Label

A[T[C[G|*

P|B|C|e
Ca,T1|[T,A]|[C,G]|[G,CT|CA,*]|LT,*]|[C,*]|[G,*]|
[*,T1|[*,A]|[*,G]|[*,C]
[o,e]|le,P]|[e,B]|[e,C]|[P,0]|[B,e]|[C,0]]
p,P1|[B,B]|[Cc,c]|lp,B]|[B,P]|[C,B]| ...

NIL | Cons Basepair Strand

data Basepair

data Labelpair

data Strand

data Dnastrand = Labelpair ++ Strand ++ Labelpair



data Tube = NIL | Cons Dnastrand Tube

Examples for instances of these data types:

[A,*]

Basepair

[[A,T],[T,A],[A,*]] :: Strand
[[e,e],[a,T],[T,A],[A,+],[@,@]] :: Dnastrand

LCe

,0],[A,T]1,[T,Al, [e,e]],[[e,@],[C,G],[@,@]]] :: Tube

Definition of selected DNA operations in DNA-HASKELL'

DNA strand Notation in DNA-HASKELL for example
snglosrands | 5 ATORAT-3[[[@@] ++ [[A*].[T.*1.[C*1.[G*].[A*].[T*]] + [(@@] —
wnisbdled | 3. TAGCTA-5 |[[@@] ++ [[*. TI.[* A [*.G.[*d.[*T.[*A] + [[@a] :

) 5 P-ATCGAT-3'B|[[P, @] ++ [[A*],[T.*].[C*],[G*],[A*],[T,*]] ++ [[B, @]
single strands

SAVCEAVS
labeled 3 B-TAGCTA-5'P|[[@B]] ++ [[*, T].[*. A.[*.G.[* d.[*T.[*A] + [[@P]]

5' - ATOGCA- 3'

, , [fl@@] ++ [[AT],[T.A.[CG,[GC,[CG,[AT]] ++ [[@Q]
double strands| 3 - TAGCGT-5 “Uﬁﬂ
wlabeled | 5 . TgogaT- 3 GHEAER

3 - AGGCTA B [fl@e@] ++ [[T.A,[GC,[CF, [GA,[AT],[TA] + [[@Q]

5 P- ATCCCA-3' P, AT.ITA.I[CG.[GT.[CG,[AT @Bl
e B Thaar o gl I[P @]+ [TATLITALIGG.[6G.[CG.[ATI] + [[@8] S
tabeted 5 B-TCOGAT-3' |[p ++ [[T.A.[GC.[CF.[GA.[AT,[TA] + [[@P Rkl

3’-ACGCTA—5’P[[’@] [[TA.[GC,[CG.[GC,.[AT], [T A] [[@P]]

e Synthesis

The function syn :: [Char] -> Tube creates a DNA single strand from the
input base sequence. The tube contains two single strand lists, one in sense
and another one with inverted sequence in antisense direction. The heads
of the sense list elements are A, T, C or G. All heads of the antisense list
elements have *-entry.

GCATTCG— | 18[CAlTLTIC]e]

Initialization
The function in :: Int -> Tube is executed as function
ini :: Int -> Tube -> Tube.

All possible permutations of DNA double strands with the defined length can
be generated within the tube. The function creates all list permutations from
the base pair lists [A,T], [T, A], [G,C] and [C,G]. The integer number defines
the lengths of the final permutated strand lists. The example uses k = 3.

I Compilers for HASKELL were developed in Yale, Glasgow and Géteborg and are free in use.
DNA-HASKELL will run on the HASKELL interpreter Hugs (HASKELL User’s Gopher System from
the University of Nottingham).
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e Annealing

The function ann :: Tube —=> Int -> Tube simulates the biological opera-

tion annealing. Single strands and double strands with sticky ends anneal to
each other only when they are complementary. If so, they are forming double
strands. All combinations are generated. The simpliest form is the annealing
of two nucleotides that results in a base pair. The function needs an integer
number that limits the length of the new annealed strands.
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e Melting

The function mel :: Tube => Tube is related to the function annealing be-
cause it represents the inversion of the biological annealing effect. Single
strands will not be changed by melting. Double strands are separated into
their single strand counterparts. After executing this operation the tube will
contain only single strands.
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e Labeling
The function 1lab :: Tube -> [Char] -> Int -> Tube sets or removes cer-

tain labels on strand ends. The string characterizes the label and the integer
number defines which strand end should be labeled. Possible labels are +/- P
(Phosphorylating/ Dephosphorylating), +/- B (Biotinylating/ Debiotinylat-
ing) und +/- C (set Cy5-label/ remove Cy5-label).
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ws BNRN
el o
e Union
The function un :: Tube -> Tube -> Tube combines the components of ei-

ther tubes. Identical strands are taken only once.
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e Ligation
The function 1i :: Tube -> Int -> Tube simulates the biological ligation.

All double strands inside the tube can be linked to itself or to another double
strand under following conditions: The strands have compatible complemen-
tary ends and at least one of the connected strands has to be modified by
5’-phosphorylation. The generation of new concatenated strands will continue
until the defined maximum in length is reached.
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e CuttingOut

The function cout :: Tube -> Int —> Tube selects all strands with the de-
fined length into the resulting tube.
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e Cut

The function cut :: Tube -> [Char] -> Tube simulates the effect of dif-
ferent restriction enzymes and cleaves all appropriate strands. A database
contains information about the names of available restriction enzymes, their
sequences and restriction sites. The effects of the different restriction enzymes
are defined by their restriction sites. Single strands are not able to be cleaved.
All resulting ends of the strands are modified by 5’-phosphorylation.
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e FilterLength

The function £1tl :: Tube -> Int -> Tube filters all strands that vary
from the defined length. These strands are collected in the resulting tube.
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¢ Blunting

Double strands with protruding ends are converted by the function blunting,
typed blnt :: Tube -> Tube, at their ends to strands carrying blunt ends.

This operation describes the filling in of recessed 3’-ends and the removal of
protruding 3’-ends.
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e Electrophoresis

The electrophoresis is formalized by the typing elt :: Tube -> [Int]. Tt

sorts all strands of one tube according to length. The function returns a list
with all appropriate lengths.
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3 The complexity of DNA-HASKELL

3.1 Objective

This section evaluates DNA-HASKELL operations from the complexity theoretical
point of view. The time complexity will be determined. The following model
implementations are compared:

e implementation on an SISD architecture (HASKELL-program using a Von-
Neumann-computer) vs.

¢ implementation on a massive parallel SIMD architecture (execution of the
operations in the laboratory).

Furthermore, we point out the real time that is required for executing DNA-
HASKELL operations in the laboratory.

3.2 Problem sizes

n: number of base pairs in the tube
n is the key parameter of problem size. All other quantities used are auxiliary
parameters.

p: number of DNA strands in the tube
Single strands and double strands are counted.

l: parameter of length
l is a natural number that is required as an additional input parameter in
some operations.

It is valid: p ~ n. That means p and n only vary in a constant factor in each
tube: p- e =mn. Thus, a DNA strand has an average length of ¢ = % base pairs.

3.3 Implementation of DNA-HASKELL on a SISD architecture
(simulation using HASKELL)

3.3.1 Time steps

e one recursive function call

e one comparison to base pairs

e one comparison to label pairs

e replace one base pair by another base pair
e replace one label pair by another label pair

e one addition of natural numbers

3.3.2 Useful operations for help

Length determination of one DNA strand
The whole strand has to be examined once requiring O(%) = 0O(c) = O(1)
additions.

— O(1)

10



Match: Is one given DNA strand a part of another one?
Let ¢1 base pairs the length of one strand and ¢y base pairs the length of the
other one (c1, ¢a constant). Thus, ¢ -¢5 comparisons to base pairs are required
in the worst case. O(c1 - ¢2) = O(1).
— O(1)

Concatenation test: Are two given DNA strands concatenable?
Let ¢1 base pairs the length of one strand and ¢ base pairs the length of the
other one (c¢1, ¢ constant). Thus, ¢1 - ¢a comparisons to base pairs and one
comparison to label pairs are required in the worst case. O(e1 - ca + 1) = O(1).

— 0(1)

Element test: Does the tube contain a certain DNA strand?
The match operation has to be executed p times. That means: p- O(1). It
follows:
— O(n)

Reverse: Generating of the reverse DNA strand corresponding to each DNA strand
in the tube
To execute this function all p DNA strands in the tube have to be examined
once. That means O(p). The consequence is:
— O(n)

Member test: remove all identical DNA strands that appear more than once in
the tube (including all reverse identical strands)
Each strand and its reverse counterpart must be compared with all other
strands and and their reverse counterparts. This function requires (2p)-(2p—1)
comparisons between DNA strands and results in the complexity:
— 0(n?)

3.3.3 Synthesis

Two single strands (one and its reverse counterpart) have to be synthesized and
put into an empty tube. According to the definition of problem size O(n) recursive
function calls ”Go to the next base pair” are necessary.

— O(n)

3.3.4 Union

The union operation copies all p DNA strands of both input tubes into the resulting
tube in p - O(1) time steps. Subsequently, the member test is executed to ensure
that no duplicates of DNA strands remain in the resulting tube. The member test
with complexity O(n?) determines the time complexity of union.

— 0(n?)
3.3.5 Labeling

All p DNA strands in the input tube are examined exactly once during labeling.
The steps ”comparison on a label pair” and ”exchange of a label pair” must be
executed p times. This results in:

— O(n)

3.3.6 Annealing

The input tube contains p DNA strands. Strands with a maximum length of / base
pairs can be produced by annealing. In principle, any of the p strands can anneal

11



in sense and antisense direction beginning at each of the [ positions. There are 227!
possibilities for annealing that have to be checked. These possibilities can be listed
in a binary table. The test whether or not two strands are able to anneal requires
O(1) time steps. The complexity O(2?P!) results in 2% possibilities. That means:
— 0(2™)

example:
input tube: Al p=2
=3
possibility
to anneal
2*p*| places posl
pos2
pos3

AV AVHAVAG T G AR R AR AR (I sense

posl | pos2 | pos3 | posl | pos2 | pos3 | posl | pos2 | pos3 | posl | pos2 | pos3 antisense

o olo o/ojojolo|o o|o]|o|[]]]
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TIAITIA
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o/ 1|0 1/0/0j0o oo 0ololo
(rlxH
AT
o/1/0 1100 oo 0lo0lo
TIAA
AT
1001|000 ofo|o 00 A
LTIAJ
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3.3.7 Ligation

The time complexity of ligation is determined by the number of concatenation tests.
The simulation of ligation runs at several stages. At first, all p DNA strands of the
input tube and their reverse counterparts are checked for their concatenability and
joint if possible:

The 2p strands of the input tube including their reverse counterparts and the
maximum (2p)? new strands of the first stage form the set of DNA strands for the
next stage. The ligation is terminated when all concatenation tests are negative
or only DNA strands with more than / base pairs are generated. The worst case

12



example:

input tube:

strandsin input
tube to check for
concatenability | possible
(maximum | concatena-
strands)

(2p) strands in input tube
(including reverse)

1st stage:

2
(2p) concatenation tests

2nd stage:

3
(2p) concatenation tests

13



consists of (I — 1) stages if there is a 1bp strand in the tube. One can describe the

l .
number of concatenation tests by >~ (2p)*. It is valid:

1=2
l
_ 2p)t
2p) =————-2p—1
Z( p) 21 P
1=2
The ligation has the time complexity:
— 0 (nl)
3.3.8 Cut

Finding the restriction site and its cutting position from the database of restriction
enzymes needs O(1) time steps using a hash table for instance. After that, the input
tube is matched n times for the restriction site. Possible cleavages are executed in
O(n). Finally, the duplicated DNA strands are removed using the member test. Its
time complexity O(n?) defines the cleavage operation.

— 0(n?)

3.3.9 CuttingOut

To execute the excise operation the lengths of all p DNA strands in the input tube
must be estimated. This requires p-O(1) time steps. During this process all strands
with the given length are copied into the resulting tube. CuttingOut has the time
complexity:

— O(n)

3.4 Implementation of DNA-HASKELL on a massive parallel
SIMD architecture

A molecularbiological laboratory is considered as massive parallel SIMD architec-
ture (”biohardware”). The described operations run there as biochemical reactions.
An execution protocol exists for each operation. Every operation represents one lab
step with the corresponding time complexity O(1). Furthermore, the complexity
of lab operations is characterized by the number of involved DNA strands and the
reaction volume.

3.5 Comparison on the implementations

operation time complexity in | time complexity in | real time required
SISD simulation SIMD model (lab | in the laboratory
steps)

Synthesis O(n) O(1) depends on
the lengths of the
strands

Annealing | O(2'™) o(1) 4h

Union 0(n?) o(1) 0,1h

Labeling O(n) O(1) 2h

Cut O(n?) O(1) 3h

CuttingOut | O(n) o(1) 3h

Ligation O(n) o(1) 12h

The table shows that annealing and ligation in the laboratory are particularly
more time efficient as opposed to the SISD version.

exponential time in simulation.
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4 The solution of an integer knapsack problem
with DN A-HASKELL

The integer knapsack problem belongs to the class of NP complete problems. There

are n objects with the weights @; € N, 1 <7 <n and a number b € N. The integer

knapsack problem is based on the decision whether or not a subset I C {1,2,...,n}

exists under the condition ) a; = b. The parameter n represents the problem size.
i€l

n objects allow 27 possibilifies to pack the knapsack.

For example, to implement in DNA-HASKELL we use the integer knapsack prob-
lem with two objects, their weights a1 = 719,42 = 393, and b = 1112.

The object weights are encoded by DNA double strands with lengths according
to the weights. The plasmid pQE30 forms the basic material. Tt is a ring-shaped
double stranded DNA and can be isolated from bacteria in the laboratory. PQE
consists of 3462 base pairs (bp) with well-known sequence.

For extracting DNA fragments with 719bp and 393bp from the plasmid it is
cleaved by the restriction enzymes Pvull and HinP1I. Pvull is a blunt end cutter.
Its restriction site appears only once in pQE30. The restriction site of HinP1I — a
sticky end cutter — exists on several different positions in pQE30. A subset of DNA
is not processed:

PQE30 pull, HinPLl |° 5
— =

To further control the ligation reactions 5’ ends of the DNA fragments must be
dephosphorylated. This step is executed immediately after cleaving. The strands
are separated by length through an agarose gel electrophoresis (lanel, digestion
product; lane2, 50bp DNA molecular weight marker):

bp bp
719 70
561 500
393

270 250
14 150
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The bands with 719bp and 393bp are excised from the gel and the DNA is
extracted.

The following step produces all possibilities to pack the knapsack using the ob-
Jects with the weights a1 and as. That means that DNA fragments with the lengths
Obp, 719bp, 393bp, and 7194+393bp should be created. The ligation concatenates
end compatible DNA double strands. The condition for concatenating is that at
least one of the two strands that is to be ligated is phosphorylated at the 5’ end.
For this purpose, an aliquot from the tube with the 719bp fragments is phosphory-
lated at the 5’ end. After that, the ligation runs with the dephosphorylated 719bp
fragments, the 5’ phosphorylated 719bp fragments and the dephosphorylated 393bp
fragments. This ensures that only one 393bp fragment can be joint to one 719bp
fragment to avoid the generation strands with more than one 393bp fragment. Frag-
ments with 7194+719bp, 7194+7194+393bp and longer can also appear but they are
outside the considered interval. This ligation produces DNA strands with exactly
these lengths representing the knapsack’s weigths of all packing possibilities except
the empty knapsack. The bands can be visualized by agarose gel electrophoresis
(lanel, ligation product; lane2, 50bp DNA molecular weight marker):

bp bp

719 0393 41112
719 L 719

393

Further researching laboratory activities focus on an increasement of problem
size and on the optimization of molecular biological techniques to use.
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The following flowchart describes the algorithm to solve an integer knapsack
problem in DNA-HASKELL. The boxes contain the name of the operation (first line)
and the parameters used (e.g. reaction tube name) according to the specification

(second line). Executing the whole process in the laboratory needs nearly 40 hours:

Synthesis
', -> PQE30S

Synthesis
’... -> PQE30A

1

Union
PQE30S, PQE30A -> PQE30SA

'

Annealing
PQE30SA, 3462 -> PQE30

Cut
PQES0, ' Pvull’ -> PQE30CL

'

Cut
PQE30CL1, 'HinP1I’ -> PQE30C2

'

Labeling

PQE30C2,’-F, 5-> ISSUES
[

Y

Y

CuttingOut
ISSUES, 719 -> ISSUE1

CuttingOut
ISSUES, 393 -> ISSUE2

Labeling
ISSUEL, '+P', 5-> ISSUE1P

Union
ISSUEL, ISSUE2 -> TEMP1

I

Union
ISSUE1P, TEMPL -> PRELIG1

'

Ligation
PRELIG], 1112 -> LENGTHS4

al+a2=1112

create plasmid pQE30

create DNA fragments encoding the weights of the objects

al=719
a2=393

4 knapsack weights using at most 2 objects

CuttingOut
LENGTHSS, 1112 -> RESULT

In case the tube RESULT is empty, no packing possibility with b = 1112 exists.
RESULT contains DNA strands that encode the packing possibility ”object] and
object2”. That’s why the solution of the integer knapsack problem is ”yes”.

The number of required biochemical operations increases linearly in the number

n of available objects.
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