

Einführung in die Wahrscheinlichkeitstheorie WS 2018/19 Übungsserie 1

Vorlesung: B. Schmalfuß

Übung: T. Bock, S. Engelhardt, C.C.M. Ritsch, B. Schmalfuß

H-Aufgabe 1 (5 Punkte)

Eine Dartscheibe besteht aus 7 konzentrischen Kreise mit den Radien $r_1 < r_2 < \ldots < r_7$. Sei A_i das Ereignis: der Kreis K_i mit Radius r_i wurde getroffen. Beschreiben Sie folgende Ereignisse:

- a) $A = A_1 \cup ... \cup A_5$;
- b) $B = A_4 \cap ... \cap A_7;$
- c) $C = A_2^c \cap A_3$;
- d) $D = A_5 \setminus A_4$;
- e) $E = A_4 \Delta A_5$.

Hier ist $A\Delta B$ die symmetrische Differenz der Ereignisse A und B definiert durch $(A \setminus B) \cup (B \setminus A)$. Man zeige durch Anwendung der Rechenregeln für Ereignisse die Beziehung $A\Delta B = (A \cup B) \setminus (A \cap B)$.

H-Aufgabe 2 (3 Punkte)

Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge zufälliger Ereignisse. Man definiere für alle $n\in\mathbb{N}$

$$B_n := A_n \setminus \left(\bigcup_{i=1}^{n-1} A_i\right).$$

Zeigen Sie, dass $\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} B_n$ und dass $B_n \cap B_m = \emptyset$, falls $m \neq n$. Man leite daraus her, dass für eine beliebige Folge von Ereignissen gilt:

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n) \quad \sigma \text{ Subadditivität.}$$

Aufgabe 3

- a) Können die Ereignisse A und $(A \cup B)^c$ gleichzeitig eintreten?
- b) Wann gilt $A \cup B = A^c$, $A \cap B = A^c$, $A \cup B = A \cap B$?

Aufgabe 4 [Geburtstagsparadoxon] In einem Hörsaal befinden sich 20 Studenten. Wie groß ist die Wahrscheinlichkeit, dass mindestens zwei am selben Tag Geburtstag haben, wenn Schaltjahre nicht berücksichtigt werden?

H-Aufgabe 5(4 Punkte) Man beweise den Additionssatz für drei Ereignisse:

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).$$

Man verallegemeinere diese Formel auf n Ereignisse.

Aufgabe 6 Gegeben seien die Wahrscheinlichkeiten

$$\begin{split} \mathbb{P}(A) &= 0.5, \quad \mathbb{P}(B) = 0.25, \quad \mathbb{P}(C) = 0.15, \\ \mathbb{P}(A \cap B) &= 0.125, \quad \mathbb{P}(A \cap C) = 0.06, \quad \mathbb{P}(B \cap C) = 0.075, \\ \mathbb{P}(A \cap B \cap C) &= 0.03. \end{split}$$

Man berechne die Wahrscheinlichkeiten der Ereignisse $A \cup C$, $A \cup B \cup C$, $A^c \cap B^c \cap C$ und $(A^c \cap B^c) \cup C$.

Abgabe: 01.11.2018 in der Vorlesung