Übungsaufgaben zur VL EWMS, WS 2018/19

Blatt 4, Abgabe: 14.11.2018, 10 Uhr

13. (1+1 Punkte)

Von vier Firmen wurde eine Brücke gebaut. Firma I lieferte dabei 10% der gesamten LKW-Ladungen mit Fertigbeton, Firma II 20%, Firma III 30% und Firma IV 40%. Bekannt ist, dass in Firma I bei 1% ihrer LKW-Ladungen mit Fertigbeton die Mischung nicht den gestellten Qualitätsanforderungen entsprach, in Firma II galt das für 0,4%, in Firma III für 0,3% und in Firma IV für 0,1%.

- (i) Ermitteln Sie die Wahrscheinlichkeit, mit der eine während der Bauarbeiten zufällig ausgewählte LKW-Ladung mit Fertigbeton nicht das richtige Mischungsverhältnis besaß!
- (ii) Eine zufällig ausgewählte LKW-Ladung besitzt nicht das richtige Mischungsverhältnis. Wie groß ist die (bedingte) Wahrscheinlichkeit, dass die Ladung von Firma I stammt?

(Abiturprüfung 1999, Sachsen)

14. (2 Punkte)

 (Ω, \mathcal{A}, P) sei ein beliebiger Wahrscheinlichkeitsraum und $(A_i)_{i \in \mathbb{N}}$ seien unabhängige Ereignisse.

Begründen Sie, dass $P\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \prod_{i=1}^{n} P(A_i)$ gilt!

15. (3 Punkte)

In der Zahlentheorie bezeichnet man als Eulersche φ -Funktion die Abbildung $\varphi \colon \mathbb{N} \to \mathbb{N}$ mit $\varphi(1) = 1$ und $\varphi(n) = \text{Anzahl}$ der zu n teilerfremden Zahlen in $\Omega_n = \{1, \ldots, n\}$, falls $n \geq 2$.

Zeigen Sie: Ist $n=p_1^{k_1}\cdots p_m^{k_m}$ die Primfaktorzerlegung von n in paarweise verschiedene Primzahlen p_1,\ldots,p_m und Potenzen $k_i\in\mathbb{N}$, so gilt:

$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_m}\right) .$$

(Hinweis: Betrachten Sie den W-Raum $(\Omega_n, 2^{\Omega_n}, P_n)$, wobei $P_n(\{k\}) = 1/n \ \forall k \in \Omega_n$. Zeigen Sie, dass die Ereignisse $A_1 := \{p_1, 2p_1, \dots, n\}, \dots, A_m := \{p_m, 2p_m, \dots, n\}$ stochastisch unabhängig sind und nutzen Sie die Beziehung $B := \{k \in \Omega_n: k \text{ ist zu } n \text{ teilerfremd}\} = A_1^c \cap \dots \cap A_m^c.$

16. (3 Punkte)

 $X: \Omega \to \mathbb{R}$ sei eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Zeigen Sie, dass $\mathcal{A}_X := \{B \subseteq \mathbb{R}: X^{-1}(B) \in \mathcal{A}\}$ eine σ -Algebra in \mathbb{R} ist!