Übungsaufgaben zur VL EWMS, WS 2018/19

Blatt 9, Abgabe: 19.12.2018, 10 Uhr

31. (1+1 Punkte)

Es sei $X \sim \mathcal{N}(\mu, \sigma^2)$.

- (i) Berechnen Sie $E[e^X]!$ Hinweis: Es gilt $x - x^2/2 = -(x-1)^2/2 + 1/2$.
- (ii) Berechnen Sie die Dichte von $Y = e^X!$

32. (2 Punkte)

Gegeben seien Zufallsvariable $X_n \sim Bin(n, p/n)$ auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) , wobei p > 0. Wogegen konvergiert für $k = 0, 1, 2, \ldots$ $P(X_n = k)$ mit $n \to \infty$?

Hinweis: Es gilt $(1 - c/n)^n \to_{n \to \infty} e^{-c}$ für $c \ge 0$.

33. (2 Punkte)

Eine Zufallsvariable X sei exponentialverteilt mit Parameter $\lambda > 0$.

Berechnen Sie den Erwartungswert von X!

34. (2 Punkte)

Xsei eine Zufallsvariable mit Dichte p und $E[|X|]<\infty.$

Zeigen Sie, dass für alle $\epsilon > 0$ gilt:

$$P(|X| \ge \epsilon) \le \frac{E[|X|]}{\epsilon}!$$

Hinweis: Übertragen Sie den Beweis von Satz 5.8(i) aus der Vorlesung auf die vorliegende Situation.