Übungsaufgaben zur VL EWMS, WS 2018/19

Blatt 11, Abgabe: 16.01.2019, 10 Uhr

37. (2 Punkte)

Die Erfolgswahrscheinlichkeit $\theta \in [0, 1]$ eines Zufallsexperimentes soll geschätzt werden. Dazu wird das Experiment n-mal (voneinander unabhängig) wiederholt und θ wird durch die relative Häufigkeit der Erfolge geschätzt.

Wie groß muss n gewählt werden, damit das quadratische Risiko des Schätzers für alle möglichen Werte von θ nicht größer als 0,01 ist?

38. (1+2 Punkte)

Gegeben seien unabhängige Beobachtungen X_1, \ldots, X_n , wobei $X_i \sim \mathcal{N}(\theta, 1), \ \theta \in \mathbb{R}$. Betrachten Sie Schätzer $\widehat{\theta}$ der Form $\widehat{\theta} = \sum_{i=1}^n a_i X_i$, wobei a_1, \ldots, a_n reelle Zahlen sind.

- (i) Wie müssen a_1, \ldots, a_n gewählt werden, damit $\widehat{\theta}$ ein erwartungstreuer Schätzer für θ ist? ($\widehat{\theta}$ ist erwartungstreu, falls $E_{\theta}\widehat{\theta} = \theta$ für alle $\theta \in \mathbb{R}$.)
- (ii) Durch welche Wahl der a_1, \ldots, a_n wird $E_{\theta}(\widehat{\theta} \theta)^2$ unter der Voraussetzung der Erwartungstreue minimiert?

Hinweis: Es gilt
$$\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} (a_i - \bar{a}_n)^2 + n\bar{a}_n^2$$
, wobei $\bar{a}_n = (a_1 + \dots + a_n)/n$.

39. (2+1+2 Punkte)

Gegeben seien unabhängige Beobachtungen X_1, \ldots, X_n mit $X_i \sim \text{Uniform}([0, \theta]), \theta > 0$.

- (i) Berechnen Sie die Verteilungsfunktion und anschließend die Dichte der Zufallsvariable $Y = \max\{X_1, \dots, X_n\}!$
- (ii) Wie muss c_n gewählt werden, damit $\widehat{\theta} = c_n Y$ ein erwartungstreuer Schätzer für θ ist? ($\widehat{\theta}$ ist erwartungstreu, falls $E_{\theta}\widehat{\theta} = \theta$ für alle $\theta > 0$.)
- (iii) Berechnen Sie das quadratische Risiko des erwartungstreuen Schätzers $\widehat{\theta} = c_n Y!$