Mathematical Statistics, Winter term 2018/19

Problem sheet 2

- 3) Consider the linear regression model $Y_i = \beta_1 + x_i\beta_2 + \varepsilon_i$, i = 1, ..., n, where $\varepsilon_1, ..., \varepsilon_n$ are i.i.d. with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. Let $\widehat{\beta}$ be the least squares estimator of β .
 - (i) Suppose that $x_i \neq x_j$, for some (i, j). Compute $E[(\hat{\beta}_i - \beta_i)^2]$, for i = 1, 2. Hint: The inverse of a regular matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
 - (ii) Suppose that x₁,..., x_n can be chosen by an experimenter, where x_i ∈ [-1, 1] and n ≥ 2 is even.
 Which choice of x₁,..., x_n minimizes E[(β̂_i − β_i)²]?
- 4) Let X be an $(n \times k)$ -matrix with rank(X) = k. Show that $M := X(X^T X)^{-1} X^T$ is the projection matrix onto the linear space $\mathcal{M} = \{Xb: b \in \mathbb{R}^k\}$. $(Mx = x \ \forall x \in \mathcal{M} \text{ and } Mx = 0_n \text{ if } X^T x = 0_k.)$
- 5) An urn contains M red and N M black balls ($0 \le M \le N$). n balls are randomly chosen without replacement. The random variable X describes the number of chosen red balls.
 - (i) For fixed M, what is the probability of X = k, for k = 0, 1, ..., n?
 - (ii) Suppose that N and n are known and that M is the unknown parameter of interest. Define an appropriate statistical experiment.
 - (iii) Find an estimator T of M with the property

$$E_M T = \int T(\omega) P_M(d\omega) = M \quad \forall M \in \{0, 1, \dots, N\}$$