Mathematical Statistics, Winter term 2018/19

Problem sheet 3

6) Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent and identically distributed, real-valued random variables with a common continuous distribution function F. Let F_n be the empiricial distribution function defined as $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x)$.

Show that, as $n \to \infty$,

$$\sup_{x} |F_n(x) - F(x)| \longrightarrow 0$$

holds almost surely.

Hint: Choose, for $\varepsilon > 0$, appropriate points $-\infty = x_0 < x_1 < \cdots < x_{M-1} < x_M = \infty$ such that $F(x_i) - F(x_{i-1}) \leq \varepsilon$ ($F(x_0) := 0$, $F(x_M) := 1$) and show almost sure convergence first at these points. Then use monotonicity of F and F_n to obtain the desired result.

- 7) Suppose that realizations of independent and identically distributed random variables X_1, \ldots, X_n are available, where $P_{\theta}(X_i = 1) = \theta = 1 P_{\theta}(X_i = 0)$ and $\theta \in \Theta$. The performance of any estimator $T = t(X_1, \ldots, X_n)$ is measured by the quadratic risk $R(T, \theta) = E_{\theta}(T \theta)^2$.
 - (i) Show that there does not exist a uniformly best estimator if $\Theta = [0, 1]$.
 - (ii) If $\Theta = \{0, 1\}$, does there exist a uniformly best estimator?
- 8) Let $(X, \Omega, \mathcal{A}, \{P_{\theta}: \theta \in \Theta\})$ be a statistical experiment. Suppose that there exists some $\theta_0 \in \Theta$ such that $P_{\theta} \ll P_{\theta_0} \ \forall \theta \in \Theta$, that is, $P_{\theta_0}(B) = 0$ implies $P_{\theta}(B) = 0$. Show that the estimator $T \equiv \theta_0$ is an admissible estimator of θ under the squared error loss.
- 9) Let X_1, \ldots, X_n be independent and identically distributed random variables with $P_{\theta}(X_i = 1) = \theta = 1 P_{\theta}(X_i = 0)$, where $\theta \in \Theta = (0, 1)$.

Show that there is no unbiased estimator $T = t(X_1, \ldots, X_n)$ of the parameter $g(\theta) = 1/\theta$.