Mathematical Statistics, Winter term 2018/19

Problem sheet 5

12) Let X_1, \ldots, X_n be independent with $X_i \sim \text{Uniform}[\theta, \theta + 1]$, where $\theta \in \Theta = \mathbb{R}$. Let π be a prior distribution for θ with an everywhere positive density p.

Find the Bayesian estimator under squared error loss.

- 13) Let X_1, \ldots, X_n be i.i.d. with $P_{\theta}(X_i = 1) = \theta = 1 P_{\theta}(X_i = 0)$ and let $\widehat{\theta}_{\alpha,\beta} = \frac{\sum_{i=1}^n X_i + \alpha}{n + \alpha + \beta}$ be the Bayesian estimator under squared error loss and prior distribution $\pi = \text{Beta}(\alpha, \beta)$.)
 - (i) Show that $\widehat{\theta}_{\alpha,\beta}$ is admissible for all $\alpha, \beta > 0$.
 - (ii) Show that $\hat{\theta}_{\sqrt{n}/2,\sqrt{n}/2}$ has a constant risk function. Is $\hat{\theta}_{\sqrt{n}/2,\sqrt{n}/2}$ a minimax estimator in $\Theta = [0, 1]$?
- 14) Let $X_1, ..., X_n$ be i.i.d. with $P_{\theta}(X_i = 1) = \theta = 1 P_{\theta}(X_i = 0)$, where $\theta \in \Theta = (0, 1)$.
 - (i) Show that $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ is admissible under the loss function L with $L(t, \theta) = (t \theta)^2 / (\theta(1 \theta))$. Hint: Show first that \bar{X}_n is the Bayesian estimator under the loss function L and prior distribution $\pi = \text{Uniform}((0, 1))$. Don't forget to show that $\theta \mapsto E_{\theta}L(T, \theta)$ is continuous for all estimators T.
 - (ii) Conclude from (i) that \overline{X}_n is also admissible under the squared error loss.