Mathematical Statistics, Winter term 2018/19 Problem sheet 6

- 15) Let X_1, \ldots, X_n be i.i.d. with $E_{\theta}X_i = \theta$ and $E_{\theta}X_i^2 < \infty \quad \forall \theta \in \Theta$, where Θ is any nonempty subset of \mathbb{R} .
 - (i) Under the squared error loss, show that any estimator of the form $\overline{X}_n + b$ with $b \neq 0$ being a constant is inadmissible.
 - (ii) Under the squared error loss, show that any estimator of the form $a\bar{X}_n + b$ with constants a > 1 and $b \in \mathbb{R}$ is inadmissible.
- 16) Let $X \sim Bin(\theta, p)$, where $\theta \in \Theta = \{0, 1, ...\}$ and $p \in (0, 1)$ being fixed. For the prior distribution $\pi = Poisson(\lambda), \lambda > 0$, compute the posterior distribution $P^{\theta|X=k}$ and the Bayesian estimator under the squared error loss.
- 17) Let $X \sim P_{\theta}^X = \text{Poisson}(\theta)$, where $\theta \in \Theta = \mathbb{R}$.
 - (i) Compute the Fisher information of the family $\{P_{\theta}^X: \theta \in \Theta\}$.
 - (ii) Compute the quadratic risk of the estimator T(X) = X of the parameter θ . Hint: Compute first $E_{\theta}X$ and $E_{\theta}[X(X-1)]$.
- 18) Let $X \sim P_{\theta}^{X} = \mathcal{N}(\theta, \sigma^{2})$, where $\theta \in \Theta = \mathbb{R}$ and $\sigma^{2} > 0$ being fixed. Does the family of distributions $\{P_{\theta}^{X}: \theta \in \mathbb{R}\}$ satisfy the conditions ($\mathcal{R}1$) and ($\mathcal{R}2$)? Compute $I(\theta)$.