Mathematical Statistics, Winter term 2018/19

Problem sheet 7

- 19) Let $X_1, ..., X_n$ be i.i.d. with $P_{\theta}(X_i = 1) = \theta = 1 P_{\theta}(X_i = 0)$, where $\theta \in \Theta = (0, 1)$. Show with the aid of Theorem 1.3.6 that $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ is admissible in the class of all estimators under the squared error loss.
- 20) Let X_1, \ldots, X_n be i.i.d. with $P_{\theta}^{X_i} = \mathcal{N}(\theta, \sigma^2)$, where $\sigma^2 > 0$ is fixed and $\theta \in \Theta := (a, b)$, $-\infty \le a < b \le \infty.$

For which values of a and b is $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ admissible under squared error loss?

- 21) Let X_1, \ldots, X_n be i.i.d. with $P_{\theta}^{X_i} = \mathcal{N}(\theta, \sigma^2 I_d)$, where $\theta \in \Theta$ and $\sigma^2 > 0$ being fixed. Let Θ be an open subset of \mathbb{R}^d .
 - (i) Compute the Fisher information of the family $\{P_{\theta}^{X_i}: \theta \in \Theta\}$.
 - (ii) Show that $T = n^{-1} \sum_{i=1}^{n} X_i$ is a best unbiased estimator of θ w.r.t. the matrix risk, $E_{\theta}[(T \theta)(T \theta)^T]$.
 - (iii) Show that T is also the best unbiased estimator under the loss function L with $L(t,\theta) = ||t - \theta||^2.$