Mathematical Statistics, Winter term 2018/19

Problem sheet 8

- 22) Let X_1, \ldots, X_n be i.i.d. with $X_i \sim \text{Uniform}([\theta_1, \theta_2])$, where $-\infty < \theta_1 < \theta_2 < \infty$.
 - (i) Compute the moment estimator of $\theta = (\theta_1, \theta_2)^T$.
 - (ii) Compute the maximum likelihood estimator of θ .
- 23) Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of independent and identically distributed random variables with $X_i \sim \mathcal{N}(\mu, \sigma^2)$, where $\theta = (\mu, \sigma^2)^T$ und $\Theta = \mathbb{R} \times (0, \infty)$. Let $\widehat{\theta}_{n,ML} = \widehat{\theta}_{n,ML}(X_1, \ldots, X_n)$ be the maximum likelihood estimator of θ .
 - (i) Compute the Fisher information matrix $I(\theta)$ of the family $\{P_{\theta}^{X_1}: \theta \in \Theta\}$.
 - (ii) Show that, as $n \to \infty$,

$$\sqrt{n}(\widehat{\theta}_{n,ML} - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, I(\theta)^{-1}\right).$$

24) Let $X_1, \ldots, X_n \sim \mathcal{N}(\theta, 1)$ be independent, where $\theta \in \mathbb{R}$. However, only realizations of the random variables Y_1, \ldots, Y_n are observed, where

$$Y_i = \begin{cases} 1, & \text{if } X_i \le 0, \\ 0, & \text{if } X_i > 0 \end{cases}.$$

Compute the maximum likelihood estimator based on Y_1, \ldots, Y_n . Is this estimator consistent?

25) Show that the Hellinger distance and the Hellinger affinity do not depend on the choice of a dominating σ -finite measure μ .

Hint: See the proof of Lemma 1.3.1.