Mathematical Statistics, Winter term 2018/19

Problem sheet 9

- 26) Let X_1, \ldots, X_n be i.i.d. with $X_i \sim \text{Uniform}([0, \theta])$, where $\theta \in (0, \infty)$.
 - (i) Compute the maximum likelihood estimator $\widehat{\theta}_{ML,n}$ of θ .
 - (ii) Compute the distribution function of $n(\theta \widehat{\theta}_{ML,n})$. What is the limit of these distribution functions as $n \to \infty$?

Definition A sequence of real-valued random variables $(X_n)_{n\in\mathbb{N}}$ on (Ω, \mathcal{A}, P) is bounded in probability (or tight), if for every $\varepsilon > 0$ there exists $M_{\varepsilon} < \infty$ such that

$$P(|X_n| > M_{\varepsilon}) \le \epsilon \quad \forall n \in \mathbb{N}.$$

27) Let $(X_n)_{n\in\mathbb{N}_0}$ be a sequence of real-valued random variables on (Ω, \mathcal{A}, P) and let $X_n \stackrel{d}{\longrightarrow} X_0$ (convergence in distribution).

Show that $(X_n)_{n\in\mathbb{N}}$ is bounded in probability.

Definition Let $(X_n)_{\mathbb{N}}$ be a sequence of real-valued random variables on (Ω, \mathcal{A}, P) and let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence of strictly positive real numbers. Then

- (i) $X_n = O_P(\alpha_n)$, if $(X_n/\alpha_n)_{n \in \mathbb{N}}$ is bounded in probability,
- (ii) $X_n = o_P(\alpha_n)$, if $X_n/\alpha_n \stackrel{P}{\longrightarrow} 0$.
- 28) Let $X_n = O_P(\alpha_n)$, $Y_n = O_P(\beta_n)$, and $Z_n = o_P(\beta_n)$.

Show that

- (i) $X_n + Y_n = O_P(\max\{\alpha_n, \beta_n\}),$
- (ii) $X_n \cdot Y_n = O_P(\alpha_n \beta_n)$,
- (iii) $Z_n = O_P(\beta_n),$
- (iv) $X_n \cdot Z_n = o_P(\alpha_n \beta_n)$.