Mathematical Statistics, Winter term 2018/19 Problem sheet 11

- 33) Let X_1, \ldots, X_n be i.i.d. with $X_i \sim \text{Uniform}([a, b]), \theta = {a \choose b} \in \Theta := \{ {x \choose y} : -\infty < x < y < \infty \}$. Find a sufficient statistic T with values in \mathbb{R}^2 .
- 34) Let $(X, \Omega, \mathcal{A}, \{P_{\theta}: \theta \in \{\theta_0, \theta_1\}\})$ be a statistical experiment, where $P_{\theta}^X = \operatorname{Bin}(n, \theta)$ and $\theta_0 \neq \theta_1$. Show that $P_{\theta_0}(\varphi(X) = 1)$ and $P_{\theta_1}(\varphi(X) = 0)$ cannot be minimized simultaneously if $\{\theta_0, \theta_1\} \neq \{0, 1\}$.
- 35) Let $(X, \Omega, \mathcal{A}, \{P_{\theta}: \theta \in \{\theta_0, \theta_1\}\})$ be a statistical experiment, where $P_{\theta_0}^X$ and $P_{\theta_1}^X$ have respective densities p_{θ_0} and p_{θ_1} w.r.t. a σ -finite measure μ . A test φ of H_0 : $\theta = \theta_0$ vs. H_1 : $\theta = \theta_1$ has the form

$$\varphi(x) = \begin{cases} 1, & \text{if } p_{\theta_1}(x) > cp_{\theta_0}(x), \\ \gamma, & \text{if } p_{\theta_1}(x) = cp_{\theta_0}(x), \\ 0, & \text{if } p_{\theta_1}(x) < cp_{\theta_0}(x) \end{cases},$$

where $c \geq 0$ and $\gamma \in [0, 1]$, and it holds that

$$E_{\theta_0}\varphi(X) = \alpha.$$

Show that φ is a most powerful test of H_0 vs. H_1 in the class of all (non-randomized and randomized) tests.