Mathematical Statistics, Winter term 2018/19 Problem sheet 12

36) Let X_1, \ldots, X_n be i.i.d. with $X_i \sim Bin(1, \theta)$, where $\theta \in \Theta := (0, 1)$. Find a (possibly randomized) test φ which minimizes

$$\beta \int \varphi(x) \, dP_{\theta_0}^X(x) \, + \, (1-\beta) \, \int (1-\varphi(x)) \, dP_{\theta_1}^X(x),$$

for some $\beta \in [0, 1]$.

37) Let X_1, \ldots, X_n be independent random variables with $X_i \sim \text{Uniform}([\theta, \theta + 1])$. Find a most powerful test of size $\alpha > 0$ for the problem

$$H_0: \quad \theta = 0 \qquad \text{vs.} \qquad H_1: \quad \theta = c,$$

where $c \in (0, 1)$.

38) Let X_1, \ldots, X_n be independent random variables with $X_i \sim \mathcal{N}(\theta, 1), i = 1, \ldots, n$. Consider the problem of testing the following hypotheses.

$$H_0: \quad \theta = \theta_0 \qquad \text{vs.} \qquad H_1: \quad \theta = \theta_1,$$

where $\theta_0 < \theta_1$.

How large must the sample size n be in order that the probabilities of type 1 and type 2 errors are both not greater than 0.05?

Hint: It holds that $\Phi^{-1}(0.95) \approx 1.64$.